上传于:2015-05-14 09:33:18 来自: 环保 / 行业污水处理 / 其他
0
4.5分

根据地表沉降量的控制要求,并按照开挖面前方土体处于超挖状态以及前方土体滑动的极端不利情况下分析箱涵顶进施工中管棚的力学作用,针对管棚不同部分的受力状况不同,按照两端固定梁和弹性地基梁模型分情况对钢管的不同部分进行分析,并对该工程进行具体的计算。

长管棚下箱涵顶进施工中管棚力学-图一

长管棚下箱涵顶进施工中管棚力学-图一

长管棚下箱涵顶进施工中管棚力学-图二

长管棚下箱涵顶进施工中管棚力学-图二

长管棚下箱涵顶进施工中管棚力学-图三

长管棚下箱涵顶进施工中管棚力学-图三

长管棚下箱涵顶进施工中管棚力学-图四

长管棚下箱涵顶进施工中管棚力学-图四

长管棚下箱涵顶进施工中管棚力学-图五

长管棚下箱涵顶进施工中管棚力学-图五

点击立即下载源文件

特别声明:本资料属于用户上传的共享下载内容,仅只用于学习不可用于商业用途,如有版权问题,请及时 联系站方删除!

收藏
分享

微信扫码分享

点击分享

  • 大跨径浅埋隧道108长管棚监控措施
    长管棚是由钢管和钢拱架组成,它是利用钢拱架沿着上部开挖轮廓线以较小的外插角向开挖面前方打人长度10~45m钢管构成的管棚,从而形成对开挖面前方围岩的顶支护。设置长大管棚的超前支护能够使围岩体和支护系统形成统一的承载结构体系,它也是对初期支护的加强和提前延伸。
  • 隧道工程超前长管棚专项施工方案
    由于隧道进、出洞口浅埋,为了保证隧道开挖稳定,实行管棚预支护,预先处理围岩,提高其整体性,增加稳定性,能承受开挖后的围岩应力和抑止围岩变形。 在开挖隧道左洞进口29m、出口30m和右洞进、出洞口30m,隧道拱部140°范围采用φ108无缝钢管(壁厚6mm)超前大管棚注浆支护辅助施工,共设37环,左洞出口和右洞进出口每环钢管总长度30m,左洞进口每环钢管总长度29m,环向间距0.4m,外插角2~3°,注水泥浆。同时根据实际情况在地下水较发育可添加水泥浆液体积5%的水玻璃,进行水泥-水玻璃双液注浆。 套拱在隧道开挖轮廓线以外施作。设计采用C25混凝土内嵌2榀工18工字钢拱架作为长管棚定向拱架,φ127无缝钢管(壁厚6mm)作套管,用φ25螺纹钢固定在拱架上,套拱纵向长度2m,拱架之间用φ22螺纹钢连接,拱架间距100cm。 超前大管棚采用φ108无缝钢管,壁厚6mm,节长6m。采用丝扣连接,丝扣长15cm,φ102×6套丝扣钢管长30cm。钢管接头按奇、偶数错开,纵向同一断面内的接头数不大于50%,相邻钢管的接头至少须错开1m 。超前大管棚施工时,钢管与隧道中心线平行,其仰角为2~3°(不包含路线纵坡)。
  • 涵顶高填方大型双孔箱涵施工图(含表格)
    一般的箱涵顶部荷载都不是太大,截面尺寸相对较小,在箱涵顶高填方的情况下,大型双孔箱涵(7m×6m)需要的截面尺寸大大增加,一般很少有这个方面的算例,本次采用excel表格编制了对称和不对称荷载作用下的双孔箱涵结构计算,分别采用弯矩分配法和迭代法计算,计算过程明确可靠。
  • 高速公路建设项目长管棚注浆施工记录表
    本资料为高速公路建设项目长管棚注浆施工记录表,目录齐全,内容完整,可供下载使用
  • 高速公路隧道长管棚施工作业指导书
    宜巴高速公路石门垭隧道,为分离式隧道。我标段右线隧道YK118+948—YK122+830,长3882m;左线隧道ZK118+963—ZK122+860,长3897m。
  • 隧道工程超前长管棚专项 施工方案
    由于隧道进、出洞口浅埋,为了保证隧道开挖稳定,实行管棚预支护,预先处理围岩,提高其整体性,增加稳定性,能承受开挖后的围岩应力和抑止围岩变形。 在开挖隧道左洞进口29m、出口30m和右洞进、出洞口30m,隧道拱部140°范围采用φ108无缝钢管(壁厚6mm)超前大管棚注浆支护辅助施工,共设37环,左洞出口和右洞进出口每环钢管总长度30m,左洞进口每环钢管总长度29m,环向间距0.4m,外插角2~3°,注水泥浆。同时根据实际情况在地下水较发育可添加水泥浆液体积5%的水玻璃,进行水泥-水玻璃双液注浆。 套拱在隧道开挖轮廓线以外施作。设计采用C25混凝土内嵌2榀工18工字钢拱架作为长管棚定向拱架,φ127无缝钢管(壁厚6mm)作套管,用φ25螺纹钢固定在拱架上,套拱纵向长度2m,拱架之间用φ22螺纹钢连接,拱架间距100cm。 超前大管棚采用φ108无缝钢管,壁厚6mm,节长6m。采用丝扣连接,丝扣长15cm,φ102×6套丝扣钢管长30cm。钢管接头按奇、偶数错开,纵向同一断面内的接头数不大于50%,相邻钢管的接头至少须错开1m 。超前大管棚施工时,钢管与隧道中心线平行,其仰角为2~3°(不包含路线纵坡)。
  • 安徽某湖泊进 洪闸施工组织设计
    行洪区位于安徽省xx,进洪闸位于行洪区上口门附近,采用开敞式水闸形式,水闸设计流量为3500m3/s。 进洪闸共31孔,单孔净宽10m,总净宽310m。水闸底槛高程▽17.5m,闸顶高程▽26.0m,闸室顺水流方向长19m,中墩厚1.4m,边墩厚1.2m,闸室总宽度352m。闸室底板为两孔一联分缝的分离式底板型式,大底板厚1.5m,小底板厚1.2m,大小底板间设搭接缝,缝间设二道橡皮止水。启闭台布置在闸室下游,顶面高程为▽36.1m,启闭机大梁支撑于排架上,启闭机台上设启闭机房,净高4.5m,宽均为5.2m。闸上公路桥设计标准为汽—20,验算荷载挂—100,桥面净宽6m,桥面高程26.0m,两侧各设宽0.5m的护轮缘石。
  • K31+758.7箱形桥顶进施工 方案
    东川货运中心布置在兰州枢纽坡底下车站与河口南车站之间,为进一步优化东川货运中心布局,结合城市规划,优化进货运中心道路等布置。在既有兰新线K31+758.7处设置场区进站道路,下穿既有线,采用2-16.0m钢筋混凝土箱形桥,与既有兰新线路中心线斜交5?,本工程位于既有兰新线铁路里程K31+690~K31+900处(上、下行双线),该处为无缝电气化铁路,箱形框架净高6.5m,净孔宽16.0m(两孔总宽37.4m),底板厚1.1m,顶板厚1m,边墙厚1.3m,设计长度12m,采用箱身预制顶进法施工,顶程22.89m,箱体基底置于弱风化泥岩,地基容许承载力[σ]=300Kpa,箱形桥基底埋入泥岩厚度为3.1m,箱形桥预制区域在线路南侧,施工平面图见附图一。
  • K31+758.7箱形桥顶进施工方案
    东川货运中心布置在兰州枢纽坡底下车站与河口南车站之间,为进一步优化东川货运中心布局,结合城市规划,优化进货运中心道路等布置。在既有兰新线K31+758.7处设置场区进站道路,下穿既有线,采用2-16.0m钢筋混凝土箱形桥,与既有兰新线路中心线斜交5?,本工程位于既有兰新线铁路里程K31+690~K31+900处(上、下行双线),该处为无缝电气化铁路,箱形框架净高6.5m,净孔宽16.0m(两孔总宽37.4m),底板厚1.1m,顶板厚1m,边墙厚1.3m,设计长度12m,采用箱身预制顶进法施工,顶程22.89m,箱体基底置于弱风化泥岩,地基容许承载力[σ]=300Kpa,箱形桥基底埋入泥岩厚度为3.1m,箱形桥预制区域在线路南侧,施工平面图见附图一。
  • 城镇地道桥顶进施工及验收规程
    本资料为:城镇地道桥顶进施工及验收规程,内容详实,可供参考。
  • 供水管进设计、施工及验收规范
    本资料为供水管进设计、施工及验收规范,内容详尽,可供参考。希望可以为大家提供帮助。
  • 钢栈桥施工方案及力学验算
    钢栈桥施工方案,附有完整的力学验算!附CAD图!! 为了满足施工需要,在大桥左侧修建一座施工钢便桥,栈桥总长558m,设计9m一跨,62跨,计63个墩,每墩位用振动锤贯入35.6cm钢管桩4根
  • 模板专项施工方案(力学计算)
    本资料为模板专项施工方案(力学计算),内容详实,可供参考。
  • 框架桥顶进施工作业指导书
    料和主要机具:水、水泥、砂、碎石、片石、钢筋、钢板、钢板桩、结构钢焊条、电焊机、防水涂料、防水卷材、石蜡、机油、塑料薄膜、铁锹、土篮、模板、脚手杆、混凝土搅拌机、灰浆搅拌机、钢筋调直机、钢筋切断机、钢筋弯曲机
  • 一级公路框架桥顶进施工组织设计
    建立建全安全质量保证体系,全面加强安全质量管理,认真落实施工安全措施,确保安全目标的顺利实现。
  • 大型设备进出场专项施工方案
    本工程为天府大道三期项目(K17+373-K20+350)工程,由成都天府新区投资集团有限公司委托,成都市市政工程设计研究院进行本段道路工程设计。 天府大道三期项目道路工程项目位于成都市天府新区内,道路起点与现状华牧路(麓山大道)相交,终点至成都市域南侧边界,接眉山界。 本段道路规划红线宽度80.0米,道路横断面组成为四块板型式,车道布置采用“主车道+辅道”模式,即3.5米人行道+7.0米辅道+9.5米主辅分隔带+16.0米主车道+8.0米中央分隔带+16米主车道+9.5米主辅分隔带+7.0米辅道+3.5米人行道;设计起点K17+373接二绕立交设计终点(公路院)。 本段包含路基工程、桥梁工程、管涵和倒虹吸工程、过人通道工程、雨水管等工程。本工程计划于2014年底完工。
  • 某顶进5.0m框构箱涵施工设计图
    本图为某框架箱涵施工设计图,内容为常见形式,其中含滑板的设计、涵体的设计、及桥顶道闸槽的设计。
  • 铁路框架桥顶进施工方案范本
    本资料为铁路框架桥顶进施工方案范本,内容详实,可供参考。
  • 隧道工程超前长管棚专项施 工方案
    由于隧道进、出洞口浅埋,为了保证隧道开挖稳定,实行管棚预支护,预先处理围岩,提高其整体性,增加稳定性,能承受开挖后的围岩应力和抑止围岩变形。 在开挖隧道左洞进口29m、出口30m和右洞进、出洞口30m,隧道拱部140°范围采用φ108无缝钢管(壁厚6mm)超前大管棚注浆支护辅助施工,共设37环,左洞出口和右洞进出口每环钢管总长度30m,左洞进口每环钢管总长度29m,环向间距0.4m,外插角2~3°,注水泥浆。同时根据实际情况在地下水较发育可添加水泥浆液体积5%的水玻璃,进行水泥-水玻璃双液注浆。 套拱在隧道开挖轮廓线以外施作。设计采用C25混凝土内嵌2榀工18工字钢拱架作为长管棚定向拱架,φ127无缝钢管(壁厚6mm)作套管,用φ25螺纹钢固定在拱架上,套拱纵向长度2m,拱架之间用φ22螺纹钢连接,拱架间距100cm。 超前大管棚采用φ108无缝钢管,壁厚6mm,节长6m。采用丝扣连接,丝扣长15cm,φ102×6套丝扣钢管长30cm。钢管接头按奇、偶数错开,纵向同一断面内的接头数不大于50%,相邻钢管的接头至少须错开1m 。超前大管棚施工时,钢管与隧道中心线平行,其仰角为2~3°(不包含路线纵坡)。
  • 钢筋力学性能试验施工方案
    按批进行检查和验收。每批由同一炉罐号、同一牌号、同一规格、的钢筋组成,热轧带肋钢筋、热轧光圆钢筋每批重量通常不大于60t,超过60t的部分每增加40t(或不足40t的余数),增加一个拉伸试验试样和一个弯曲试验试样。
  • 天津某水厂进水泵房施工组织设计

    工程包括泵房及变配电室两部分。泵房基础为钢筋砼箱型基础,主体为钢筋砼框架结构,变配电室基础为有梁式筏型基础,主体为钢筋砼框架结构。泵房底相对标高为-5.67m,变配电室底相对标高为-1.8m。箱型基础砼强度等级为C30S6,主体框架柱、梁、屋面板砼强度等级为C30,垫层强度等级为C10,其余次要构件砼强度等级为C20。进水泵房主体地上一层,局部地下一层。进水泵房建筑基底面积1090.35㎡,建筑面积为1090.35㎡。本工程设计使用年限为50年。防火设计分类:进水泵房为戊类,变配电室为丙类,建筑耐火等级为二级。屋面防水等级为二级,防水层合理使用年限为15年。建筑工程设计等级为三级。结构安全等级为二级,抗震设防类别为乙级。     

  • 四孔箱形框架桥顶进工程施工文案
    本工程位于xx铁路下K1298+026.4处,与即有xx铁路夹角15。11’17”,该工程由四孔箱形框架桥和一孔套涵组成,组合形式为4x9.3m+4.55m并列组成,桥长69.87m,分三段施工(甲段顶进施工,长度为43.53m;乙段、丙段现浇施工,长度分别为18 m和8.3m),工作坑在铁路南侧,箱涵编号从南京向上海方向依次为甲1、甲2、甲3、甲4、甲t。先顶进上海方向套涵,然后顶进甲4箱涵,再顶进甲1箱涵,最后顶进中间两孔甲2、甲3箱涵。本工程共需5孔D24便梁和3孔D16便梁,施工区域内xx铁路上、下行线间距为4.85m,铁路线路为直线段,满足便梁架设要求。
  • 天津某水厂进水泵房施工组织设计
    工程名称:天津市**水厂净水厂项目进水泵房工程。 建设地点:天津市**区**公路二线以南、**以西处。 建设单位:天津市**集团有限公司。 设计单位:天津市**给排水研究设计院有限公司。 招标代理:天津市**工程机电设备咨询有限公司。 建设规模:天津市**水厂净水厂项目规模50万立方米/日;5.79立方米/秒。 承包方式:包工包料。 质量标准:国家验收合格标准。 招标范围:建设单位所发工程量清单及图纸中进水泵房土建、水、暖、电、机电设备安装工程。 工期目标: 2007年6月5日开工,2007年11月30日完工,总工期178日历日。
  • 铁路立交改造框架桥顶进施工方案
    本文详细介绍市政、公路与铁路立交改造下穿框架桥顶进工程的施工方案
  • CJJ74-99城镇地道桥顶进施工及验收规程
    本文档为CJJ74-99城镇地道桥顶进施工及验收规程,文档内容详尽可供参考
  • 郑州电力学校施工设计方案
    本工程为河南电力工业学校家属楼中央空调安装工程,位于郑州市电厂路西侧,建筑物共地上十一层,地下一层,建筑面积共计22030平方米。本工程包括通风空调末端安装、主机房设备安装,打井。通风空调末端采用风机盘管空气处理方式。水系统采用同程式,设计冷负荷均为1867.6KW/H,热负荷均为793.6KW/H,主机房由一台地源热泵冷水机组,一台制热量为793.6 KW地源热泵向系统提供冷热源。
  • 高层建筑结构施工力学分析
    通常高层结构设计是以建造好结构在使用荷载下的计算模型为依据。然而这是同结构在实际施工过程产生的力学状态有差异的。为此本文将采用超级有限元2有限元耦合法对高层结构进行施工模拟分析 , 按照施工顺序及施工时的实际情况进行力学分析 , 从而对保证结构建造全过程的可靠性和安全性 , 指导选用合理的施工方案 , 具有一定的理论意义和现实意义。
  • 单洞双层地铁隧道施工力学行为
    地铁隧道为避开沿线高大建筑物密布的桩基,部分段落需要采用暗挖法施工的单洞双层隧道通过,而此时 地铁隧道穿越的地层条件复杂,围岩极其软弱,地下水位高,且隧道埋深较浅,其力学行为将和单个隧道大不相同。通过建立有限元模型,对软弱地质条件下单洞双层地铁隧道无临时横联和有临时横联的施工过程进行数值模拟,研究隧道各施工阶段的稳定性及支护结构的安全性,并对隧道洞周位移的计算值与实测值进行比较。结果表明,只有增加临时横联才能保证单洞双层地铁隧道的施工安全,且下洞施工和拆除临时横联是施工的关键工序。
  • 电力学校施工组织设计方案
    本资料为:电力学校施工组织设计方案,内容完整,详细,可供参考。
  • 钢制的大型进料斗设计模型是一种新型给料设备、安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱、堵塞和粘仓现象,解决料仓排料难的问题。广泛用于化工、建材、冶金、机械制造、粮食及食品加工、饲料加工、环保、陶瓷等行业。虽然是SOLIDWORKS2014(还有3D通用格式X-T)绘制的一款零件图,但是每个特征都绘制的比较清晰,可以将每个特征保存为每个零件图,自己还可以练习装配体,可以再模型中...
  • 钣金扣片级进模具设计模型这是一款用于制作钣金扣件的级进模设计模型图,级进模,也叫连续模,指由多个工位组成、各工位完成不同的加工、各工位顺序关联,在冲床的一次行程中完成一系列的不同的冲压加工。(SW2010绘制,包含参数,可以编辑的模型)...
  • 折弯扣片制作的级进模具设计模型这是一款用于制作折弯片的级进模具设计模型图,级进模,由多个工位组成,各工位按顺序关联完成不同的加工,在冲床的一次行程中完成一系列的不同的冲压加工。(考虑到图纸能够通用其它不同类型的3D软件,所以以3D格式STP或者是IGS为准,本上传模型式用SW转换后的样子,SW转换后的模型只作为参考)...
  • 连接槽板级进钣金组合模具采用多跳步的形式将落料、冲孔、折弯、切断等多工部进行组合,极大的提高了生产效率,也增加了设备的生产效益。与自动送料结合,同时也降低了人员的劳动强度。是用CATIA软件精心制作,解压完成后大概20M左右。主要结构非常详细,各零件用颜色进行了划分。各零件可以分部拆解,并制作出工程零件图。...
    专题: 餐厅模型连接
  • 本次上传的是铣床的进给机构三维模型图,此结构是从整体机床结构中单独拆出来的,结构包括传动丝杠,丝母、丝母座、大伞齿轮,2个小换向伞齿轮,小齿轮组、手柄换向机构,传动安装箱体等组成,结构通俗易懂。喜欢的朋友可以下载看看;上传文件为IGS和STP的。...
  • 20平方米进料仓模型设计:进料口部分4000x3500x1150mm,接触面为i304不锈钢,外部加强筋及钢板为碳钢结构焊接而成。底部出料口可对接螺旋送料机等。...
  • 进相器与电容对电机无功补偿的比较
    静止式进相器和电容器对电机补偿的比较: 一、回路不同 静止式进相器和电容补偿对电机的作用点不同,电容是在电机的前端定子侧进行补偿;静止式进相器是从电机的末端转子侧进行补偿。 二、补偿方式不同 电容补偿是通过提供无功功率给电机,使电机减少对电网的无功功率的吸收,本身的无功消耗并没有减少;静止式进相器补偿是通过在电机转子回路串联和转子电流同频率的电源,改变转子电流和电压的相位关系,进而通过磁场减小定子电流和电压的相位角,使电机的无功功率损耗减少。 三、补偿范围不同 电容并联在电机的前端,其补偿范围是在补偿点的前端,没有覆盖后端的电机;静止式进相器串联在电机的后端,其补偿范围扩大到了电机。各自的补偿范围如各自的回路图中虚线框所示。 四、补偿效果不同 电容补偿是从外部进行的,并没有改变电机的运行状况,电机本身的功率因数没有提高,定子电流没有下降,消耗的无功功率没有减少,只是提高了电网的功率因数。所以,严格的说,并联电容补偿是对电网的补偿,而不是对电机的补偿。而静止式进相器的补偿是从电机内部改变运行状况,使电机本身的功率因数提高到0.95~0.98以上,电子电流下降10~20%,无功功率消耗下降60%以上,进而使电网功率因数得到提高。 静止式进相器补偿使电机定子电流减小的同时,产生许多电容补偿所不能达到的效果,电机的定子电流减少使变压器或电源有更大余量,电机铜损会降低20~30%,自身损耗会减少,效率提高,电机温升降低,使用寿命延长,过载能力提高,单耗降低,产生节能效果。这些都是电容外部补偿所不能做到的。 详情请参阅我公司网站:http://www.zhel.cn 或者拨打咨询热线:400-006-2003 13508660044
点击查看更多
全部评论 我要评论
暂无评论