上传于:2023-12-20 08:45:53
0
5分

三轴取纸箱机械手设计:此机械手的动力为伺服电机提供,伺服电机可保证高响应与高精度,易于控制,机械手设计三轴,抓取产品为纸箱,夹紧机构为平行对中夹紧抓取,上传格式X-T,欢迎下载。...

点击立即下载源文件

特别声明:本资料属于用户上传的共享下载内容,仅只用于学习不可用于商业用途,如有版权问题,请及时 联系站方删除!

收藏
分享

微信扫码分享

点击分享

  • 料盒纸箱双侧同步抱紧抓手:通过双气缸对双夹板进行对中,夹板前部设置有橡胶板,增加摩擦力以对产品的搬运,细节已经做到位,也可以作为参考学习使用。...
  • 蜘蛛机械手又名并联机械手,其特点是可快速响应抓取,多应用于在线产品的抓取分类,常与视觉一起配合使用,此线体是完成对滚筒线体上的产品装入到纸箱中,上传格式为通用stp...
  • 此模型为吸盘电磁铁通用机械手夹具吸盘采用食品级硅胶配逻辑阀(止回阀)-型材上有crg汇流排。图纸为STEP文件,是学习和参考的绝佳模型,为你的产品设计助力,如果感兴趣,欢迎下载...
  • 桁架机械手是工业生产中最常见的一种自动上下料机械手,本设计采用最基本的传动设计,横向与升降均由伺服电机驱动,手爪采用可翻转的气动夹爪。上料台采用多工位叠加方式放料。上料台具有旋转和顶升功能。...
  • 一种电动抓取机械手的设计,机械手设计,抓取机器手,伺服电动机械手设计,结构紧凑,成本节约,利用伺服电机可实现机械手精确张紧,欢迎下载学习。软件版本SW2018和STEP通用格式。...
  • 多自由度的机械手设计模型是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。不包含参数,但是可以编辑,可以用SOLIDWORKS2010打开,绘很不错的学习资料。...
  • 多驱动的机械手(爪)设计模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,...
  • 详解的动作机械手设计模型是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。(catiaV5R20绘制,不包含参数,可以编辑的模型)...
  • 8款norelem对夹机械手设计,主要配合工业机器人使用,连接于工业机器人末端,气动夹爪抓取零件给机床上料和下料。主要适用于盘类、轴类零件的加工使用。模型包含stp...
  • inventor设计的假肢(机械手)模型就是用工程技术的手段和方法,为弥补截肢者或肢体不完全缺损的肢体而专门设计和制作装配的人工假体,又称“义肢”。它的主要作用是代替失去肢体的部分功能,使截肢者恢复一定的生活自理和工作能力。其适用对象是因疾病、交通事故、工伤事故、运动创伤等原因的截肢者。(INVENTOR2014绘制,包含参数,但是可以编辑的模型)...
  • inventor设计的机械手掌模型是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。(INVENTOR2014绘制,包含参数,但是可以编辑的模型)...
  • 市场畅销的机械手设计模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。(SW2010绘制,不包含参数,但是可以编辑的模型)...
  • 码头搬运机械手(人)设计模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,...
  • 简易的机械手装置设计模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有...
  • 工业机械手设计模型能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。不包含参数,但是可以编辑,可以用SOLIDWORKS2010打开,绘很不错的学习资料。...
  • 移动的工业机械手设计模型能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。(SW2010绘制,不包含参数,但是可以编辑的模型)...
  • 平面移动的机械手设计模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有...
  • 带弹簧的弹性机械手的设计通过对带弹簧的弹性机械手的手部分析进行,从而确定手部结构,在此基础上对机械手进行设计计算。最后通过Proe三维软件,绘制出所有零件立体图...
  • 本次上传的是:直线导杆和气缸组合成的简单机械手,本机械手由小平台、直线导杆组件、直线轴承滑动座、立柱、旋转臂、中间活动关节、端部活动关节、手指安装座、手指、气缸(活塞缸或叫气压杆)等组成。结构简单,学生可以动手制作,喜欢的朋友可以看看。...
  • 用Solidworks2015版本设计,机器人机械臂机械手夹钳手机械模型,该模型创建效果逼真,不含参数,可以修改,提供stp及Solidworks2015下载,为你的产品设计助上一臂之力,各位机械控模型迷,欢迎下载...
  • 自动上料三轴取料机设计模型这是一款自动上料三轴取料机设计模型图,一般用于工业自动抓取板料使用的取料机设计图,其结构包含了气缸推动机器手抓取部分,皮带传输部分,升降部分等。结构设计相当好,非常不错的资料。...
  • 基于PLC的三维机械手的控制
    基于PLC的三维机械手的控制 基于PLC的三维机械手的控制 基于PLC的三维机械手的控制
  • 本图纸带有可移动底座,可方便机械手进行位置移动,机械手是通用机械手,在头端装有可调节的旋钮,可进行长度调节,方便适合多种机械头,适用范围广(HBS-100)。...
  • 该设备主要用在工件的搬运设备中,其功能是把皮带线上的工件搬运到轨道链上,用以其他工艺的处理,采用PVC皮带和轨道链结构,这样可以提高效率,其结构主要由PVC皮带,轨道链,机械手等组成,图纸是solidworks版本,欢迎下载参考。...
  • 机器人手爪三维Solidworks模型,零件建模步骤及建模特征细致清晰,是工作学习不可错过的好资料。该设计模型图,可以用SOLIDWORKS16及以上版本打开,绘制比较形象生动,非常逼真。欢迎下载学习,很不错的学习资料。...
  • 一款设计常用的机械手吸盘机构设计参考学习,横移轴采用单轴移动模组,气缸上下动作多个吸盘吸取产品,图纸详细SW格式可编辑修改大小,内含STEP/X_T格式。欢迎下载。...
  • 该设计是一套伺服两轴机械组装手,设计结构中是带的气动夹具,结构设计中X轴采用是同步带传动,Z轴传动采用的是丝杆传动。该设计在实用中,运行的非常平稳,图纸格式为XT,欢迎下载学习。...
  • 浇铸,在不加压或稍加压的情况下,将液态单体、树脂或其混合物注入模内并使其成为固态制品的方法。塑料的铸塑成型类似于金属的浇铸,它是将配制好的液态原料浇入模具,固化后得到与模腔形状和尺寸相近的塑料制件,这种方法称为塑料的铸塑成型。...
  • 桁架机械手是一种建立在直角X,Y,Z[1]三坐标系统基础上,对工件进行工位调整,或实现工件的轨迹运动等功能的全自动工业设备。其控制核心通过工业控制器(如:PLC,运动控制,单片机等)实现。通过控制器对各种输入(各种传感器,按钮等)信号的分析处理,做出一定的逻辑判断后,对各个输出元件(继电器,电机驱动器,指示灯等)下达执行命令,完成X,Y,Z三轴之间的联合运动,以此实现一整套的全自动作业流程。...
  • 在国内,随着物流自动化,码垛机械手获得快速发展的同时,其结构及示教模式中的不足也不断涌现。对于结构的不足,本文在现有运动方案的基础上,提出一种新型机构运动方案,通过ANSYS软件对关键零部件进行拓扑优化,将质量降低10%,提高负载特性达到结构优化的目的;并根据MATLAB的动力学仿真结果,证实新方案使关节驱动力矩降低30%、改善搬运性能。对于示教模式的不足,本文在码垛机械手与视觉系统相结合的基础上...
  • 伺服多工位取料机械手设计:此取料机械手采用了伺服电机与丝杆和伺服电机与同步带轮的传动机构用于传动,前端抓取采用了手指气缸进行抓料,上传格式XT....
  • 概念款式的机械手护套设计模型英文名:protectivegloves;safetygloves,用途:防御劳动中物理、化学和生物等外界因素伤害劳动者手部的护品。防护手套不锈钢丝手套,只能说是有限保护,企业要在设备的安全装置上进行改进;用在裁减设备的高速转动刀片上,钢丝手套只能做短暂性防护作用(并且要及时关机),若不能及时停止机器的话,钢丝手套同样会被锯断。(catiaV5R20绘制,不包含...
  • 气动对中夹持机械手设计模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需...
  • 简易机械手臂设计三维模型,模型整体结构完整,所有连杆机构及零件除舵机外,均可3D打印或CNC切割进行制作,所有的零件表面均打有标号方便进行组装。前端为机械夹爪。欢迎下载使用。...
  • 一款机械手设计简单轻巧模型,机械手具有非常简单和轻巧的设计,可将其安装在任何无人机和机械臂上。请为该机械手使用MG995R伺服器和2个长170mm,直径6mm的管。图纸格式SW2016,STEP...
  • 智能芯片的机械手(inventor)设计模型是在机械化,自动化生产过程中发展起来的一种新型装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。(INVENTOR2014绘制,包含参数,但是可以编辑的模型)...
  • CATIA设计的机械手模型主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需...
  • 多自由度的机械手臂设计模型是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。(SW2014绘制,包含参数,可以编辑,还有3D通用格式X-T格式)...
  • 仿真的机械手(invnetor)设计模型是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。(INVENTOR2014绘制,包含参数,但是可以编辑的模型)...
  • 机械手抓夹具(inventor)设计模型可以实现类似人手功能的机器人部件。机器人手爪是用来握持工件或工具的部件,是重要的执行机构之一。根据机器人所握持的工件形状不同,手爪可分为多种类型,主要可分为三类:机械手爪,又称为机械夹钳,包括2指、3指和变形指;包括磁吸盘、焊枪等的特殊手爪;通用手爪,包括2指到5指。(INVENTOR2014绘制,包含参数,但是可以编辑的模型)...
点击查看更多
全部评论 我要评论
暂无评论