部分斜拉桥体系参数对动力特性的影响分析

建立三跨双塔部分斜拉桥基准有限元动力分析模型, 分别改变支承条件、主梁高跨比、边主跨比以及主 塔高度与刚度等主要体系参数, 研究其对部分斜拉桥结构动力特性的影响规律. 计算结果表明, 结构体系参数 的变化对部分斜拉桥动力特性的影响较复杂, 因此部分斜拉桥工程结构设计时应注意合理确定结构体系参数, 以满足抗震设计的要求.

上传人: 上传时间:2015-05-14 11:17:58 文档格式:zip 收藏数:0 页数: 5 评论数: 0 分类标签: 建筑设计 / 中国古建 / 仿古建筑
详细介绍 相关推荐 内容评论
详细介绍
部分斜拉桥体系参数对动力特性的影响分析-图一

部分斜拉桥体系参数对动力特性的影响分析-图一

部分斜拉桥体系参数对动力特性的影响分析-图二

部分斜拉桥体系参数对动力特性的影响分析-图二

部分斜拉桥体系参数对动力特性的影响分析-图三

部分斜拉桥体系参数对动力特性的影响分析-图三

部分斜拉桥体系参数对动力特性的影响分析-图四

部分斜拉桥体系参数对动力特性的影响分析-图四

部分斜拉桥体系参数对动力特性的影响分析-图五

部分斜拉桥体系参数对动力特性的影响分析-图五

特别声明:本资料属于用户上传的共享下载内容,仅只用于学习不可用于商业用途,如有版权问题,请及时 联系站方删除!

收藏
分享

微信扫码分享

点击分享

相关推荐
  • 斜拉桥斜拉索体系病害分析与处理方案
    为了延长斜拉索的使用寿命,确保桥梁的安全运营,对海u世纪大桥斜拉索体系进行了检测和养护维修。
  • 某(斜拉桥-连续梁组合体系)桥图纸

    一、 桥梁概述   本桥属河南省王楼(省界)至兰考高速公路XX段,净宽7m上跨车行天桥。桥梁起讫桩号K0+307.17~K0+417.17,全长110m,中心桩号K0+362.17,与高速公路交叉桩号K18+225。上部结构采用(20+32+32+20)m预应力钢筋混凝土斜拉桥-连续梁组合体系,塔墩梁固结。下部结构采用圆端形桥墩、肋式台、钻孔灌注桩基础。   二、设计采用的标准及规范    1、采用规范    ⑴ 《公路工程技术标准》(JTJ001-97)    ⑵ 《公路桥涵设计通用规范》(JTJ021-89)   ⑶ 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85)    ⑷ 《公路桥涵钢结构及木结构设计规范》(JTJ025-86)   ⑸《公路斜拉桥设计规范(试行)》(JTJ027-96)    ⑹ 《公路桥涵地基与基础技术规范》(JTJ024-85)    ⑺ 《公路工程抗震设计规范》(JTJ004-89)    ⑻ 《公路桥涵施工技术规范》(JTJ041-2000)    ⑼ 《高速公路交通安全设施设计与施工技术规范》(JTJ074-94)    ⑽ 《公路桥位勘测设计规范》(JTJ062-91)    2、参考规范    ⑴ 《British Standard BS5400》    ⑵ 《Standard Specifications for Highway Bridges》U.S.A,1996.    ⑶ 《日本高等级公路设计规范》第二册,1990.   ⑷ 《公路桥梁抗风设计指南》   三、主要技术标准    桥梁宽度: 1.0(护索区)+0.5m(护栏)+净—7.0m(行车道)   +0.5m(护栏)+1.0(护索区)=10.0m    桥面横坡: 2 %    桥梁纵坡: 2.6%   设计荷载: 汽车—20级,挂车—100    地震烈度: 基本烈度Ⅶ度,按Ⅷ度设防    桥面铺装: 6~13cm厚40号混凝土调平层+6cm沥青混凝土铺装   五、设计要点    (一)、结构设计   本桥起点桩号K0+307.17,终点桩号K0+417.17,全长110m,桥梁中心桩号K0+362.17,与高速公路交叉桩号K18+225。桥位处于半径为R=2000m竖曲线上,平面位于直线段,桥面设置双向2%横坡,最大纵坡2.6%。   上部结构采用(20+32+32+20)m预应力钢筋混凝土斜拉桥-连续梁组合体系,塔墩梁固结。主梁采用单箱双室截面,梁高1.0m,边腹板厚80cm,一个腹板设置6束13φj15.24钢束,中腹板厚30cm,配置3束13φj15.24。为方便施工,箱梁设计时,不在箱室内设齿板,腹板预应力束均于梁端进行张拉。翼缘板悬臂长为35cm,顶板厚20cm,底板厚20cm。端横梁宽1.0m,墩顶中横梁宽1.2m,塔墩中横梁宽2.0m,中横梁为预应力横梁,横向预应力采用6束13φj15.24,详见相关设计图纸。   桥塔采用H型塔,矩形实心截面,上部宽1.3m,根部宽1.7m;桥面以上上塔柱高18m,下塔柱高8.5m,全高26.5m,并设置上、下横梁各一道,上横梁高1.2m;下横梁高1.5m,与主梁一同浇筑。在塔壁表面设置一层D5防裂钢筋网,以防止出现表面裂缝。桥塔承台厚2.5m,平面尺寸14.8X6.3m,基础为8Φ1.5钻孔灌注桩,桩长35m。   斜拉索采用OVM200级钢绞线拉索,钢绞线标准强度为1860MPa的,规格均为15-7。梁上标准索距4m,塔上标准索距1.6m,单塔双索面扇形布置。斜拉索在主梁上锚固,予塔壁交叉交替单端张拉,配套千斤顶型号YDCS1000。拉索护套采用双层彩色高密度聚已烯(PE)护套,外径Φ90mm。全桥共计24根OVM15-7规格的拉索,每根拉索张拉端与锚固端均设置减震器一套,全桥共计56套。设计采用一次调索成桥。   桥墩采用壁厚为1.0m的圆端形桥墩,墩高6.5m,承台厚2.0,桩径1.5m,桩长32m。桥台为肋式台,双肋双排桩,台高5.5m,肋宽0.8m,桩径1.2m,桩长30m。   

  • 某框架结构办公楼的动力特性测试与分析
    通过对一框架结构办公楼的脉动测试,在频域中进行参数识别获取结构的动力参数,并与理论计算结果进行比较分析,得出了一些在工程动测与结构计算分析中实用的结论。
  • 高耸电视塔的动力特性及风振反应分析
    建立了合肥塔的杆系和梁系三维空间有限元模型,进行了合肥塔的动力特性分析并比较了2种模型的差异。随后形成一维串联多自由度动力模型,模拟了合肥塔顺风向脉动风荷载,并进行风振反应分析,结果表明合肥塔顶部鞭梢效应极为明显,高振型对合肥塔风振反应的影响不可忽略。
  • 圆柱面巨型网格结构动力特性及抗震分析
    综述了巨型网格结构的特点及研究状况,在此基础上,应用有限元理论和子空间迭代法求得圆柱面巨型网格结构的自振频率和振型,并讨论了矢跨比、结构约束、长跨比、荷载大小、网格大小等参数对巨型网格结构基频的影响,应用振型分解反应谱法进行了抗震计算,并与时程分析法的计算结果进行了比较,二者基本一致。得出了一些有益结论,为该种结构在实际工程中的推广应用提供参考。
  • 混凝土斜拉桥的设计与计算
    混凝土斜拉桥的拉索一般为柔性索,高强钢丝外包的索套仅作为保护材料,不参加索的受力,在索的自重作用下有垂度,垂度对索的受拉性能有影响,同时索力大小对垂度也有影响。为了简化计算,在实际计算中索一般采用一直杆表示,以索的弦长作为杆长。关健问题是考虑索垂度效应对索的伸长与轴力的关系影响,这种影响采用修正弹性模量来考虑
  • 动静结合分析基桩受力特性
    在竖向荷载不大的情况下,桩侧土处于弹性变形阶段,桩侧土的极限摩阻力高,OA段就较长,反之OA段较短。
  • 【厦门】银湖大桥(部分斜拉桥)结构施工图
    这是一个部分斜拉桥的图纸,项目是厦门银湖大桥。图纸内容包括:桥式总布置图,桥梁立面图,桥梁平面图,主桥梁体构造总图,主桥梁顶设计高程表,桥梁纵剖面图和节点详图。
  • 超限高层结构动力特性及抗震性能分析
    建筑技术 Architecture Technology 第42 卷第1 期2011 年1 月 摘要: 常州市某超限高层建筑,结构高175m,地上42层,采用钢筋混凝土框架-核心筒结构,通过使用有限 元软件Etabs,分析该建筑的结构动力特性,确定振型分解法的合理振型参与数,以及通过弹性时程法分析在最不 利地震波作用下该结构的地震反应。结构符合国家现行规范要求,计算方法和结论对于运用有限元软件计算超 限高层建筑有一定的参考价值。 关键词: 超限高层;etabs;动力特性;地震反应;时程分析
  • 重庆出口加工区卡口钢拱结构动力特性分析
    重庆出口加工区卡口钢拱结构动力特性分析重庆出口加工区卡口钢拱结构动力特性分析
  • 双塔双索面斜拉桥主桥结构支承体系节点详图设计

    大桥起点桩号为K76+945.800,终点桩号为K77+766.800,桥梁全长821m。其中主桥长766m。主桥采用43m+147m+386m+147m+43m的双塔双索面预应力混凝土斜拉桥,竖曲线变坡点桩号位于主桥主跨中心,桩号为K77+331.300,其左右为1.60%纵坡,凸曲线,竖弯半径为R=22000m,T=352m,E=2.816。    主桥采用双塔双索面PC梁斜拉桥,边跨与主跨跨径比为0.4922, 为了增加斜拉桥的整体刚度,两边跨均设一个辅助墩,将190m的边跨分成147m+43m两跨。在辅助墩、过渡墩及索塔横梁上均设置竖向支座,结构为半飘浮体系。在索塔处设置横向限位支座,以及纵向限位支座,防止在地震等情况下发生过大的水平位移。   

  • 一维动静组合加载下砂岩动力学特性的试验研究
    基于对深部岩石承受高地应力并在动力开挖扰动下发生破坏这一问题的科学认识,利用改造的劈裂霍普金森压杆动静组合加载试验装置,开展一维动静组合加载下砂岩的动力学特性试验研究。选取无轴压和3个典型轴压水平4种情形,开展不同应变率下的冲击试验。研究结果表明,相同戍变率下岩石对外界冲击的响应受轴压比影响很大,冲击强度会随着轴压比的增加出现先增加后减小的趋势,在轴压比为0.6~0.7时达到最大值。相同轴压下,冲击强度会随着应变率的增加而增加,呈现指数函数关系。在一定的轴压比范围内,随着入射能的递增,岩石在加载破坏试验中先后会经历“吸收能量一释放能量一吸收能量”3个阶段。这3个阶段可以较好的解释高应力下岩石的动态强度递增、岩爆发生和诱导致裂三者之间的互相转化机制,对深部岩石工程的实践可以提供理论上的指导。
  • 空气阀水锤防护特性的主要影响参数分析及优化
    对空气阀水锤防护特性的主要影响因素进行了试验分析。结果表明:在合理位置安装合适进排气孔口径的空气阀可有效防止因水柱分离再弥合而导致的巨大水锤升压,但空气阀的防护效果受安装位置和进排气孔口径的影响较大;口径过大,在排气过程中会产生较大的水锤升压,口径过小则可能因进气量和进气速度不够而达 不到水锤防护的效果,实际应用中应对进、排气孔口径进行优化或采用“快进慢出”的结构形式;对本试验装置,空气阀应安装在首先产生水柱分离的位置,不合理的安装位置会加剧管道中的水锤压力上升。在此基础上,建立了空气阀参数和泵出口阀关闭程序的优化模型,并采用遗传算法进行求解。将上述优化方法应用到实际供水工程的水锤防护,提出了适宜的水锤防护措施。
  • 基于FLAC3D液化土中桩基侧向动力特性数值模拟研究李雨润
    强震作用下的桩基动力响应一直是土动力学和岩土工程抗震领域研究的热点。基于液化土中的桩基振 动台试验,采用有限差分软件 FLAC3D进行数值模拟,并将模拟结果与试验结果进行对比分析。结果表明,在正弦 波工况下随着输入波峰值加速度的增加,桩基横向动力响应明显,尤其是当输入峰值加速度为 0. 15g 时砂土发生 液化,桩基横向动力响应达到最大,模拟结果与试验结果非常接近; 在 El Centro 地震波输入下,加速度时程曲线形 状和数值大小在不同的时刻略有差异,而位移时程曲线形状和数值大小吻合较好; 同时,两种工况下的孔压比时程 曲线也吻合较好,试验孔压比略有下降而模拟孔压比下降不明显,模拟孔压比在前期比试验孔压比小一些。
  • 【辽宁】340m半漂浮体系斜拉桥全套设计施工图

    本工程总长1341.24米,由主桥、引桥、引道、及接线道路四部分组成。本施工图包括主桥、引桥、引道三部分,全长1090m,其中主桥长340m,东、西引桥全长268m,东、西引道全长482m,主桥宽度为25m,引道及引桥宽度为22m。 桥梁主桥为3跨预应力混凝土半漂浮体系斜拉桥,长度为340m,跨径布置为80+180+80=340m。两侧引桥采用等截面连续箱梁形式,西引桥长132m、东引桥长136m。西引道长238m,东引道长244m。


  • 半漂浮体系斜拉桥双菱形连体索塔设计图

    设计概况:    索塔:双菱形连体索塔,高141.5m,C50钢筋混凝土,大吨位低回缩锚具    索塔基础:承 台:62m×33m,高5.5m,C35海工耐久性砼    钻孔桩:直径2.2m,有效桩长129,C30海工耐久性砼   ......   编制于2009年,共包含CAD设计图3张。

  • 674m全漂浮体系斜拉桥主桥一般构造节点详图设计

    1、路基宽度:双向六车道,35m   2、计算行车速度:120km/h   3、设计荷载:汽车-超20级,挂车-120   4、地震基本烈度:Ⅶ度   5、通航水位:   设计最高通航水位:15.29m(85国家高程)   设计最低通航水位: 9.30m(85国家高程)   6、通航净空:    ****二级通航,通航水位以上净高7m,净宽不小于90m。    **四级通航,通航水位以上净高7m,净宽不小于45m。   7、设计洪水频率:1/300   8、斜拉桥桥宽:0.5m(风嘴)+1.3m(拉索锚固区)+0.5m(防撞护栏)+15.5m(行车道)+1.0m(波形梁栏)+1.0m(中央分隔带)+1.0m(波形梁护栏)+15.5m(行车道)+0.5m(防撞护栏)+1.3m(拉索锚固区)+0.5m(风嘴)=38.6m   

  • 考虑堆石料软化特性的坝坡动力稳定和滑移变形分析
    对 10 组已建或拟建工程堆石料低围压下三轴固结排水剪的试验数据进行分析整理,得到相应的峰值强度和残余强度,并拟合出考虑堆石料软化的归一化残余强度曲线。在此基础上,采用有限元动力稳定和滑移分析方法分别进行考虑和不考虑堆石料软化的稳定计算,并对计算结果进行讨论。
  • 龙口水力特性曲线(东溪分流)
    此表为,龙口水力特性曲线(东溪分流)表格,内容完整,值得参考,可供设计师下载。
  • MIDAS模型_苏通大桥(斜拉桥
    解释一下,苏通桥最终采用的分析软件是奥地利的TDV。 此模型是本人在别的网站购买的,买下来没做任何修改,大家喜欢的下,不喜欢的不要贬别人的东西,不要说废话,,毕竟此模型是原作者辛勤的劳动成果!
  • 斜拉(斜拉桥)系统的检查与养护
    介绍了对斜拉桥斜拉系统进行全面检查和观测的主要内,从五个方面提出了进行斜拉系统养护和维修的具体措施,以有效延长斜拉桥的使用年限,确保其安全运行。
  • 独塔双索面斜拉桥组织方案
    本工程于2004年8月1日开工,2005年7月30日竣工,工期12个月。本桥主梁采用双边箱梁预应力混凝土主梁,主梁全长180m,?梁高2.3m,主梁在塔柱处扣除了锚索区,横隔梁与斜拉索对应布置。
  • 转体斜拉桥施工控制中的参数敏感性分析
    包含设计参数的结构响应敏感性分析(混凝土弹性膜量变化的结构影响、斜拉索张拉力及刚度影响、混凝土收缩徐变得影响、温度变化敏感性分析),可供参考。
  • 基于共同作用下巨型框架结构的动力特性分析
    本文由西南科技大学发布,归纳巨型框架结构的力学机理与响应,可供大家参考。
  • 部分预应力混凝土斜拉桥主桥桥型布置节点详图设计

    本图为部分预应力混凝土斜拉桥主桥桥型布置图,可供参考下载。

  • 对斜拉索独塔单索面PC部分斜拉桥图纸95张
    对斜拉索独塔单索面PC部分斜拉桥图纸95张(桥宽36米 知名大院)_dwg,完整规划CAD平立面图大样图和效果图,单体与总平面图吻合,彼此间对应关系准确,图纸中无错漏碰缺,欢迎下载。
  • 半漂浮体系主跨220m双塔双索面斜拉桥设计套图

    本桥设计荷载:公路Ⅰ级。主桥上部构造采用55+45+220+45+55m一联双塔双索面斜拉桥, 半漂浮体系,55+45m边跨为混凝土梁,中跨为钢箱梁,钢混结合段设在中跨靠近主塔位置。桥面宽度组成为:3.5m(人行道路)+1.5m(索锚固区)+12m(机动车道)+0.5m(防撞墙)+12m(机动车道)+1.5m(索锚固区)+3.5m(人行道路)。

  • 104m预应力钢筋混凝土组合体系斜拉桥斜拉索设计参数表节点详图设计

    1、设计荷载:汽车-20级,挂-100。   2、本桥所处地区地震烈度:7度,按8度设防。   3、本桥上部结构采用(20+45+20)m预应力钢筋砼连续梁、系杆拱协作体系,下部采用实体圆端形墩、肋台、钻孔灌注桩基础。   4、立面图墩台顶标高、基底标高系指墩台中心处的高程。   5、桥台处伸缩装置采用D80型浅槽式伸缩缝。   6、本桥桥头设置8米长搭板。   7、本桥桩基设计为摩擦桩,施工时若与实际地质情况不符,应及时变更设计。   8、被交路改路长度为430米,桥梁长度以外路基面层采用20cm厚级配碎石。   

  • 独柱式大悬臂高架车站的动力特性及地震反应分析
    摘要:利用三维空间有限元法对国内第1座独柱式大悬臂高架车站——上海轨道交通6号线外高桥车站动力特性进行了计算分析,并根据反应谱理论分析了该车站的抗震能力
  • 中承式拱桥静力特性研究及仿真模拟分析
    中承式拱桥作为一种常见的桥型结构,近几十年来在我国得到了极大的发展,而对中承式拱桥设计理论的研究则相对落后于工程实践,在动力特性方面的研究更落后于静力特性方面的研究。现阶段,由于钢管混凝土拱桥和劲性骨架混凝土拱桥的兴起,中承式拱桥正不断地向大跨度、轻型化方向发展。本文在对力学和有限元学习的基础上收集了有关拱桥的设计资料,进行了计算机仿真模拟分析,同时以信阳浉河大桥为背景,使用ANSYS软件建立了空间有限元模型,对现实结构模型进行了简化,并模拟分析了不同荷载工况下桥面吊杆的应力及应变情况。通过荷载试验,对桥梁的实际承载能力,安全状况进行评估,并针对计算结果对结构进行了分析。
  • 水和水蒸汽热力特性查询软件
    水和水蒸气热力性质查询,包括压力、温度、系数、比容及焓熵查询。
  • 台阶式泄槽溢洪道的水力特性
    台阶式泄槽溢洪道的显著特点是沿溢流面的消能率大大提高, 从而可免除或极大地缩短 溢洪道末尾所需消能工的尺寸。台阶水道还可用于水处理工厂,
  • 674m全漂浮体系斜拉桥主桥主梁施工流程节点详图设计

    1、路基宽度:双向六车道,35m   2、计算行车速度:120km/h   3、设计荷载:汽车-超20级,挂车-120   4、地震基本烈度:Ⅶ度   5、通航水位:   设计最高通航水位:15.29m(85国家高程)   设计最低通航水位: 9.30m(85国家高程)   6、通航净空:    ****二级通航,通航水位以上净高7m,净宽不小于90m。    **四级通航,通航水位以上净高7m,净宽不小于45m。   7、设计洪水频率:1/300   8、斜拉桥桥宽:0.5m(风嘴)+1.3m(拉索锚固区)+0.5m(防撞护栏)+15.5m(行车道)+1.0m(波形梁栏)+1.0m(中央分隔带)+1.0m(波形梁护栏)+15.5m(行车道)+0.5m(防撞护栏)+1.3m(拉索锚固区)+0.5m(风嘴)=38.6m   

  • 674m全漂浮体系斜拉桥主桥块钢筋构造节点详图设计

    1、路基宽度:双向六车道,35m   2、计算行车速度:120km/h   3、设计荷载:汽车-超20级,挂车-120   4、地震基本烈度:Ⅶ度   5、通航水位:   设计最高通航水位:15.29m(85国家高程)   设计最低通航水位: 9.30m(85国家高程)   6、通航净空:    ****二级通航,通航水位以上净高7m,净宽不小于90m。    **四级通航,通航水位以上净高7m,净宽不小于45m。   7、设计洪水频率:1/300   8、斜拉桥桥宽:0.5m(风嘴)+1.3m(拉索锚固区)+0.5m(防撞护栏)+15.5m(行车道)+1.0m(波形梁栏)+1.0m(中央分隔带)+1.0m(波形梁护栏)+15.5m(行车道)+0.5m(防撞护栏)+1.3m(拉索锚固区)+0.5m(风嘴)=38.6m   

  • 674m全漂浮体系斜拉桥主桥主梁块一般构造节点详图设计

    1、路基宽度:双向六车道,35m   2、计算行车速度:120km/h   3、设计荷载:汽车-超20级,挂车-120   4、地震基本烈度:Ⅶ度   5、通航水位:   设计最高通航水位:15.29m(85国家高程)   设计最低通航水位: 9.30m(85国家高程)   6、通航净空:    ****二级通航,通航水位以上净高7m,净宽不小于90m。    **四级通航,通航水位以上净高7m,净宽不小于45m。   7、设计洪水频率:1/300   8、斜拉桥桥宽:0.5m(风嘴)+1.3m(拉索锚固区)+0.5m(防撞护栏)+15.5m(行车道)+1.0m(波形梁栏)+1.0m(中央分隔带)+1.0m(波形梁护栏)+15.5m(行车道)+0.5m(防撞护栏)+1.3m(拉索锚固区)+0.5m(风嘴)=38.6m   

  • 104m组合体系斜拉桥下部桥台一般构造节点详图设计

    1、设计荷载:汽车-20级,挂-100。   2、本桥所处地区地震烈度:7度,按8度设防。   3、本桥上部结构采用(20+45+20)m预应力钢筋砼连续梁、系杆拱协作体系,下部采用实体圆端形墩、肋台、钻孔灌注桩基础。   4、立面图墩台顶标高、基底标高系指墩台中心处的高程。   5、桥台处伸缩装置采用D80型浅槽式伸缩缝。   6、本桥桥头设置8米长搭板。   7、本桥桩基设计为摩擦桩,施工时若与实际地质情况不符,应及时变更设计。   8、被交路改路长度为430米,桥梁长度以外路基面层采用20cm厚级配碎石。   

  • 104m组合体系斜拉桥下部桥锥坡一般构造节点详图设计

    1、设计荷载:汽车-20级,挂-100。   2、本桥所处地区地震烈度:7度,按8度设防。   3、本桥上部结构采用(20+45+20)m预应力钢筋砼连续梁、系杆拱协作体系,下部采用实体圆端形墩、肋台、钻孔灌注桩基础。   4、立面图墩台顶标高、基底标高系指墩台中心处的高程。   5、桥台处伸缩装置采用D80型浅槽式伸缩缝。   6、本桥桥头设置8米长搭板。   7、本桥桩基设计为摩擦桩,施工时若与实际地质情况不符,应及时变更设计。   8、被交路改路长度为430米,桥梁长度以外路基面层采用20cm厚级配碎石。   

点击查看更多
全部评论 我要评论
暂无评论