上传于:2018-11-28 14:40:00 来自: 建筑设计 / 建筑节点详图 / 通用节点详图
0
5分

设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

双线有砟轨道隧道斜切式洞门节点详图设计-图一

双线有砟轨道隧道斜切式洞门节点详图设计-图一

双线有砟轨道隧道斜切式洞门节点详图设计-图二

双线有砟轨道隧道斜切式洞门节点详图设计-图二

双线有砟轨道隧道斜切式洞门节点详图设计-图三

双线有砟轨道隧道斜切式洞门节点详图设计-图三

双线有砟轨道隧道斜切式洞门节点详图设计-图四

双线有砟轨道隧道斜切式洞门节点详图设计-图四

双线有砟轨道隧道斜切式洞门节点详图设计-图五

双线有砟轨道隧道斜切式洞门节点详图设计-图五

双线有砟轨道隧道斜切式洞门节点详图设计-图六

双线有砟轨道隧道斜切式洞门节点详图设计-图六

点击立即下载源文件

特别声明:本资料属于用户上传的共享下载内容,仅只用于学习不可用于商业用途,如有版权问题,请及时 联系站方删除!

收藏
分享

微信扫码分享

点击分享

  • 隧道双块式无砟轨道试验段开工报告
    隧道整体道床施工采取两斜井间单线铺设的施工方法。双块式轨枕的安装及固定采用60kg/m钢轨作为工具轨,利用工具轨锁定整体道床轨面系统,以确保轨面的几何状态准确无误,道床混凝土一次浇注成型。 通过试验段的铺筑,进一步优化施工工艺、砼浇注、粗调、精调等施工机械设备组合和工序衔接,并修正施工方案,完善施工组织。试验内容具体包括:①确定用于施工的集料配合比例;②选择合理的施工机具;③隧道内、外物流组织;④确定标准的施工方法;⑤确定每一作业段的合适长度。 施工步骤:工作面清理、测量放线、铺设底层钢筋、人工散轨、安装WJ-8A扣件、工具轨铺设调整及加固 、轨排粗调、安装上层钢筋、绝缘测试、安装纵横向模板、轨排精调、混凝土浇筑、混凝土养护、施工工艺和施工方法
  • 隧道内双块式无砟轨道整体道床施工技术
    中铁十七局负责承建的张唐铁路3标段永福山隧道全长8284m,为单洞双线隧道。设计标准为:行车时速120公里,国家重载Ⅰ级,双块式无砟轨道结构。双块式无砟轨道结构层主要组成分为由75kg/m (重车)/60kg/m(轻车)、WJ-12型扣件、重载双块式轨枕、道床板.
  • 双线隧道洞门成套cad设计图纸

    内容简介 设计原则    1、计算方法及采用依据    本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。    (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册●隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。    斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。   

  • 无砟轨道双线预应力混凝土连续梁(悬灌施工)
    铁路桥梁设计,无砟轨道双线预应力混凝土连续梁(悬灌施工)(40+2×64+40)m
  • 尤溪隧道CRTS型双块式无砟轨道施工作业指导书
    曲线超过设置在道床板上,采用外轨抬高方式,在缓和曲线内按线性完成过渡。本隧道进口段曲线段里程DK370+042.31~DK370+536.81,长度494.50m,曲线半径为10000m,缓和曲线按照允许速度200km/h设置曲线超高,超高为35mm。
  • 双块式无砟轨道合理刚度取值研究
    为确定双块式无砟轨道的合理刚度,提出将准静态与动力响应分析手段相结合,根据应力、变形及振动水平控制指标,综合比选合理范围内的多种轨道刚度方案来确定双块式无砟轨道合理刚度的方法。分别运用有限单元法和车辆一轨道耦合动力理论建立双块式无砟轨道准静态计算模型进行应力与变形分析,开展无砟轨道扣件刚度对轮轨系统动力响应的影响分析。结果表明:对于250 km/h和350 km/h客运专线双块式无砟轨道,扣件刚度宜分别在35~45 kN/mm和20~25 kN/mm范围内取值。
  • TBT3397-2015CRTS双块式无砟轨道混凝土轨枕
    TBT3397-2015CRTS双块式无砟轨道混凝土轨枕,内容详细,可供大家下载参考。
  • 8CRTS型双块式无砟轨道施工工法
    本资料为:8CRTS型双块式无砟轨道施工工法,内容详实,可供下载参考。
  • 排架法双块式无砟轨道工法
    该资料为CRTSⅠ型双块式无砟轨道轨排框架法施工 CRTSⅠ型双块式无砟轨道是我国自行设计的一种无砟轨道结构型式,采用铁科院研发的WJ-7型扣件。采用轨排框架法工法施工可以提高过程控制精度等级,具有程序化施工、方便管理精度控制和加快工程进度的特点。其成套工装设备主要有:双梁型组合轨道排架(或单梁型组合轨道排架),龙门吊,移动式组装平台,轨排架吊具等。
  • 关于点支承无砟轨道的探讨
    本文在参考遂渝线嘉陵江大桥砂浆换填方案进行研究的基础上,参照砂浆换填支承结构形式,对点支承板式无砟轨道结构进行了垂向荷载作用受力分析。
  • 局排架法双块式无砟轨道工法
    本资料为:局排架法双块式无砟轨道工法,内容详实,可供下载参考。
  • 8CRTS型双块式无砟轨道施工法
    该资料为CRTSⅠ型双块式无砟轨道施工工法 CRTSⅠ型双块式无砟轨道是我国高速铁路无砟轨道的主要结构形式,具有铺设精度高、造价低、经久耐用等特点。该种无砟轨道结构在国内全面推广之初,其施工铺设技术尚属国内空白,是我国铁路无砟轨道技术再创新攻关工作的重要内容之一。
  • [云南]时速250公里铁路双线隧道复合式衬砌设计cad图纸,共78张(双块式无砟轨道 知名大院设计).
    本资料为[云南]时速250公里铁路双线隧道复合式衬砌设计cad图纸,共78张(双块式无砟轨道 知名大院设计).,包括:隧道建筑限界及衬砌内轮廓,I&I级围岩无仰拱复合式衬砌断面,I&I&I级围岩有仰拱复合式衬砌断面(一)~(二),I&I&I级围岩B型复合式加强衬砌钢筋布置图(一)~(四)等,设计规范,内容详实,可供设计师参考
  • 时速250公里客专双线有砟轨道隧道下锚复合式衬砌施工图36张(知名大院)

    设计依据:高速铁路设计规范TB10621-2014 J1942-2014。

      图纸适用于电力牵引、设计行车时速250公里、客运专线铁路,碳化环境且环境作用等级为T2的II-V级围岩双线隧道接触网锚段关节区有砟轨道段。适用于线间距为4.6m的新建电力牵扯引双线铁路区间隧道下锚及隔离开关衬砌段。隧道内双侧设置贯通的救援通道,救援通道宽1.5m,高2.2m,外侧距线路中线的距离为2.3m,救援通道通行面高出设计轨面30cm。

      图纸设计II-V级围岩的双线隧道下锚及隔离开关段复合式衬砌断面及相应工程量,其中II、III级围岩按深埋设计,IV级围岩按深埋、浅埋设计,V级围岩按深埋、浅埋、偏压设计。本图各型衬砌工程数量表中开挖数量已计入初期支护引起的开挖增量,未计超挖及预留变形量引起的开挖量。II级围岩采用曲墙带仰拱和曲墙带底板衬砌,底板厚30cm;III、IV、V级围岩采用曲墙带仰拱衬砌。衬砌轨面以下结构按铺设60kg/m钢轨,有砟道床类型设计。

  • 双块式无砟轨道施工工艺及质量控制
    结构组成 双块式无砟轨道由钢轨、弹性扣件、双块式轨枕、道床板、底座板/支承层等组成。
  • CRTS1双块式无砟轨道先导段施工方案
    CRTS1双块式无砟轨道先导段施工方案,编制依据、编制范围,工程概况,施工管理,临时工程,施工资源配置,物流组织方案
  • 双线分离式隧道衬砌节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

  • 复合式衬砌隧道洞门设计节点详图
    本工程为复合式衬砌隧道洞门设计节点详图,包含剖面图、立面图、广塘端洞门设计图 等,图纸内容完整,表达清晰,制图严谨,欢迎设计师下载使用。
  • 分离式双洞隧道进口洞门节点详图设计

    (三)主要技术标准   1.道路等级、行车速度与行车道宽度    1)道路等级:高速公路;    2)设计行车速度:80Km/h;    3)行车道宽度:2×3.75米   2. 建筑界限    1)隧道建筑界限:行车道宽度为2×3.75米,净高5米,两侧路缘带宽为0.5米,两侧余宽为0.25米,一般路段路面横坡为2%(弯道内根据实际超高路面横坡确定),单侧设检修道宽0.75米,高于路面0.25米。    2)车行横洞建筑界限:净宽4.5米,净高5.0米。    3)人行横洞建筑界限:净宽2米,净高2.2米。   3.洞内卫生标准    隧道纵向通风时,隧道CO浓度为242ppm;烟尘允许浓度≤0.007m-1。   4.路面设计荷载    标准轴载:BZZ-100。   

  • 【广西】时速250公里铁路双线隧道洞门结构设计
    本图适用于新建铁路线电力牵引、设计行车时速250公里客货共线(普通货物及双层集装箱)铁路双线隧道洞门。双线电化隧道洞门设计图主要包括柱式、耳墙式、台阶式、偏压式明洞门、单压式明洞门及双耳墙明洞门以及洞口检查设备、洞内外水沟连接、名牌及号标布置以及边仰坡防护(适用于当地气候适宜于草籽成活的各种土质或全风化的岩质边、仰坡,边、仰坡坡率不大于1:1.25,高度一般不超过6~8m。
  • [四川]铁路双线隧道锚段衬砌施工图232张(无砟知名大院)

    资料目录 设计说明2 目录 锚段衬砌内轮廓4 锚段区段平面布置图2 II型无仰拱非绝缘一般锚段复合式衬砌断面2 IIIa型非绝缘一般锚段复合式衬砌断面2 IIIb型非绝缘一般锚段复合式衬砌断面2 IIIb型非绝缘一般锚段复合式衬砌格栅钢架设计图4 IVa、IVb型非绝缘一般锚段复合式衬砌断面2 IVa型非绝缘一般锚段复合式衬砌断面5 IVb型非绝缘一般锚段复合式衬砌断面5 IVa型非绝缘一般锚段复合式衬砌格栅钢架设计图5 IVb型非绝缘一般锚段复合式衬砌型钢钢架设计图4 Va、Vb型非绝缘一般锚段复合式衬砌断面2 Va型非绝缘一般锚段复合式衬砌钢筋布置图5 Vb型非绝缘一般锚段复合式衬砌钢筋布置图5 Va型非绝缘一般锚段复合式衬砌型钢钢筋设计图5 Vb型非绝缘一般锚段复合式衬砌型钢钢筋设计图5 II型无仰拱非非绝缘下锚段复合式衬砌断面2 IIIa型非绝缘下锚段复合式衬砌断面2 IIIb型非绝缘下锚段复合式衬砌断面2 IIIb型非绝缘下锚段复合式衬砌钢筋布置图5 IIIb型非绝缘下锚段复合式衬砌格栅钢架设计4 IVa、IVb型非绝缘下锚段复合式衬砌断面2 IVa型非绝缘下锚段复合式衬砌钢筋布置图5 IVb型非绝缘下锚段复合式衬砌钢筋布置图5 IVa型非绝缘下锚段复合式衬砌格栅钢架设计图5 IVb型非绝缘下锚段复合式衬砌型钢钢架设计图4 Va、Vb型非绝缘下锚段复合式衬砌断面2 Va型非绝缘下锚段复合式衬砌钢筋布置图5 Vb型非绝缘下锚段复合式衬砌钢筋布置图5 Va型非绝缘下锚段复合式衬砌型钢钢架设计图4 Vb型非绝缘下锚段复合式衬砌型钢钢架设计图4 II型无仰拱绝缘一般锚段复合式衬砌断面2 IIIa、IIIb型绝缘一般锚段复合式衬砌断面2 IIIb型绝缘一般锚段复合式衬砌格栅钢架设计图4 IVa、IVb型绝缘一般锚段复合式衬砌断面2 IVa型绝缘一般锚段复合式衬砌钢筋布置图5 IVb型绝缘一般锚段复合式衬砌钢筋布置图5 IVa型绝缘一般锚段复合式衬砌格栅钢架设计图5 IVb型绝缘一般锚段复合式衬砌型钢钢架设计图4 Va、Vb型绝缘一般锚段复合式衬砌断面2 Va型绝缘一般锚段复合式衬砌钢筋布置图5 Vb型绝缘一般锚段复合式衬砌钢筋布置图5 Va型绝缘一般锚段复合式衬砌型钢钢架设计图5 Vb型绝缘一般锚段复合式衬砌型钢钢架设计图4 II型无仰拱绝缘下锚 隔离开关段复合式衬砌断面2 IIIa、IIIb型绝缘下锚 隔离开关段复合式衬砌断面4 IIIb型绝缘下锚段复合式衬砌钢筋布置图5 IIIb型绝缘下锚 隔离开关段复合式衬砌格栅钢架设计图5 IVb型绝缘一般锚段复合式衬砌型钢钢架设计图4 IVa、IVb型绝缘下锚 隔离开关段复合式衬砌断面2 IVb型绝缘下锚 隔离开关段复合式衬砌型钢钢架设计图3 Va、Vb型绝缘下锚 隔离开关段复合式衬砌断面2 Va型绝缘下锚 隔离开关段复合式衬砌钢筋布置图5 Vb型绝缘下锚 隔离开关段复合式衬砌钢筋布置图5 Va型绝缘绝缘下锚 隔离开关段复合式衬砌钢筋布置图4 Vb型绝缘绝缘下锚 隔离开关段复合式衬砌钢筋布置图4 非绝缘下锚段与普通复合式衬砌接头处挡头墙设计图2 非绝缘下锚段与非绝缘一般锚段复合式衬砌接头处挡头墙设计图2 绝缘下锚段与普通复合式衬砌接头处挡头墙设计图2 非绝缘下锚段与普通复合式衬砌接头处挡头墙设计图2 下锚段挡头墙钢筋布置图 下锚段扶手栏杆设计图 下锚段防排水设计图

  • 某高铁无砟轨道施工组织设计
    工程概况 1、工程概况及技术标准 新建上海至杭州铁路客运专线站前工程HHZQ-6标段,正线起讫里程DK103+850~DK135+512,全长31.985km,其中路基3345.836m,桥梁28.639km,无碴轨道铺设63.97单线公里,无轨道板约制造14269块,铺设约9918块。
  • [云南]双线隧道复合式衬砌图纸71张含设计数据(有砟轨道开行双层集装箱)
    位置:云南
    设计时间:2010年
    隧道所处的地质条件:石质隧道
    隧道的长度:5400米
    隧道所在的位置:城市隧道
    隧道埋置的深度:浅埋隧道
    隧道的用途分类:市政隧道
    围岩分类:Ⅳ:极硬岩

    资料目录 设计说明(一)~(七) 隧道建筑限界及衬砌内轮廓 衬砌及初期支护参数表 I&I级围岩复合式衬砌(无仰拱)断面(一)~(二) I&I级围岩复合式衬砌(无仰拱)底板钢筋布置(一)~(二) I&I&I级围岩A型复合式衬砌断面(一)~(二) I&I&I级围岩B型复合式衬砌断面(一)~(二) I&V级围岩A型复合式衬砌断面(一)~(二) I&V级围岩A型复合式衬砌钢筋布置图(一)~(三) I&V级围岩B型复合式衬砌断面(一)~(二) I&V级围岩B型复合式衬砌钢筋布置图(一)~(三) V级围岩A型复合式衬砌断面(一)~(二) V级围岩A型复合式衬砌钢筋布置图(一)~(三) V级围岩B型复合式衬砌断面(一)~(二) V级围岩B型复合式衬砌钢筋布置图(一)~(三) V级围岩C型复合式衬砌断面(一)~(二) V级围岩C型复合式衬砌钢筋布置图(一)~(三) 水沟、电缆槽、盖板详图(一)~(二) I&I&I级围岩加强复合式衬砌格栅钢架设计图(一)~(四) I&V级围岩A型复合式衬砌格栅钢架设计图(一)~(四) I&V级围岩B型复合式衬砌格栅钢架设计图(一)~(四) I&V级围岩B型复合式衬砌型钢钢架设计图(一)~(三) V级围岩A型复合式衬砌型钢钢架设计图(一)~(五) V级围岩B型复合式衬砌型钢钢架设计图(一)~(五) V级围岩C型复合式衬砌型钢钢架设计图(一)~(五) 复合式衬砌监控量测(一)~(四) 计算表格32张: 140双线双箱III级(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱III级加强(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱II级(无仰拱)(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱IV级(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱IV级加强(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱V级(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱V级加强(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4 140双线双箱V级抗震(断面尺寸及数量表 钢筋 格栅钢架 型钢钢架)4

  • CRTSI型双块式无砟轨道施工作业指导书
    施工前技术人员应对施工图纸及相关的通用图纸和规范进行认真阅读、熟悉掌握路基支承层施工作业的设计要求和验收标准,制定施工作业方案、安全保障措施及应急预案,对施工作业人员进行岗前技术、安全培训和考核,合格后方可上岗。
  • 武广客运专线双块式无砟轨道精调技术介绍
    介绍了武广客专线无砟轨道精调技术的作业流程、注意事项,以及各种调整方案的制定。
  • 大跨度钢桥双块式无砟轨道精度控制施工工法
    内容简介 铁路客运专线特大桥采用1-140m下承式钢箱系杆拱桥斜跨京珠高速公路,为国际上基于350km/h的客运专线同类型桥型中最大跨径,同时该类桥型应用于高速铁路无砟轨道在世界上尚无先例,没有可借鉴经验。 [工法特点] 本工法解决了大跨度钢桥由于受到温度及荷载变化影响会产生较大变形,无砟轨道施工精度控制困难的难题,满足高速列车通过时的舒适性要求。 双块式无砟轨道施工已属成熟工艺,本工法仅介绍相对于一般无砟轨道施工,大跨度钢桥双块式无砟轨道施工精度控制的方法及注意事项。 该工法操作简单,适用性强,容易推广应用。 [施工工艺流程及操作要点] 设计线形:为保证高速列车平稳运行和乘坐舒适度,系杆拱上无砟轨道需设置一定的预拱度,在道床板上进行调整。综合考虑各种情况,轨道预拱度按实际列车、单线、全桥均布荷载进行计算和拟合。设计院采用CRH3型列车进行计算并进行拟合,得出轨道设计线形:桥梁中部40m范围内抬高量为4.5mm,自梁端至50m处抬高量按线性变化,不设竖曲线,钢轨自然弯曲即可。该线性作为施工完成后长轨静态精调线形 桥上荷载变化产生下挠的分析与处理:根据施工工序安排,无砟轨道道床板施工时,二期恒载尚未加设完成,同时施工荷载作为临时荷载需要清除,要想保证轨道最终线形符合设计要求,则必须对桥上荷载影响进行检算,并做预留拱度处理…… …… 共计7页
  • 隧道无砟轨道道床板砼及附属工程开工报告
    我方承担的隧道Ⅰ线无砟轨道工程,已完成以下各项准备: 1、施工组织计(方案)已审批完成; 2、设计院已完成精测网的布置及测量工程,资料已提交。线路拟合后的资料已提交。 3、我单位已完成精测网的复测工作,经复核准确无误,满足精度要求; 4、施工图纸已到齐,现场核对无误、征地拆迁工作已完成,施工场地清理、平整、硬化达到规定要求; 5、施工人员、工程材料、施工机械、设备,能满足施工需要; 6、已完成进场材料检验的试验及C40砼配合比的审批工作。 7、无砟轨道铺设条件评估已完成; 8、安全、质量、环水保各项保证措施已到位。 具备了开工条件,特此申请施工,请核查并签发开工令。
  • 分离式双洞隧道出口洞门节点详图设计

    (三)主要技术标准   1.道路等级、行车速度与行车道宽度    1)道路等级:高速公路;    2)设计行车速度:80Km/h;    3)行车道宽度:2×3.75米   2. 建筑界限    1)隧道建筑界限:行车道宽度为2×3.75米,净高5米,两侧路缘带宽为0.5米,两侧余宽为0.25米,一般路段路面横坡为2%(弯道内根据实际超高路面横坡确定),单侧设检修道宽0.75米,高于路面0.25米。    2)车行横洞建筑界限:净宽4.5米,净高5.0米。    3)人行横洞建筑界限:净宽2米,净高2.2米。   3.洞内卫生标准    隧道纵向通风时,隧道CO浓度为242ppm;烟尘允许浓度≤0.007m-1。   4.路面设计荷载    标准轴载:BZZ-100。   

  • 双线分离式隧道右线照明节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

  • 双线分离式隧道内部装饰节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

  • 双线分离式隧道内路面结构节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

  • 双线分离式隧道洞口平面节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

  • 双线分离式隧道监控量测节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

  • 双线分离式隧道左线照明节点详图设计

    3.3 隧道结构设计   3.3.1 洞口设计   根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。   洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。   3.3.2 洞身结构设计   3.3.2.1 洞口段   根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。   

点击查看更多
全部评论 我要评论
暂无评论