内容简介 一、概述 在隧道施工中,根据地质条件和机械设备情况,隧道设计要求,已总结出许多不同开挖方式:如全断面开挖、台阶分部开挖,单侧壁开挖、CRD开挖、双侧壁导坑开挖等。 **隧道右线在S5a段采用了CRD法进行暗洞开挖,但由于CRD法本身的问题和地质条件的限制,不得不改变施工方法,变为更为合理的双侧壁导坑法进行施工。 1、CRD法本身暴露出的主要问题 从安全上考虑,在无地下水或地下水不丰富的条件下,CRD法作为一种比较保守、劳动密集型的的施工方法,是有一定的优势的,安全能够保证。但是在地层富水,地压大增的条件下,事实证明,由于该方法自身结构和工艺的原因,在没有采取严格的注浆堵水工艺的前提下,该方法是失败的。这可从地表下沉和洞内支护变形中得到明示。 除安全问题外,CRD法由于工作面所限,无法全面展开机械化作业,其效率一直得不到保证,施工速度已然受到严重制约。 2、地质条件的限制 所施工掌子面围岩仍为强风化花岗岩,隧道埋深为13.8m。我单位运用GPR地质雷达仪对YK6+786~YK6+901段地表进行了地质探测,根据处理成果剖面,发现大约在YK6+786~YK6+840段,地下2.5~17米范围内,电磁波反射较弱,为全、强风化的花岗岩地层。YK6+840~YK6+901段附近有房屋,雷达探测剖面中,反射波振幅较强,反射紊乱,同相轴连续性差,可能为回填土或扰动土。 在隧道开挖施工过程中,业已证实YK6+840~YK6+901段岩层土体较松散,同时受近期雨水多影响,土体含水量大,自稳能力差,不能形成自然拱,隧道上方沿两侧的破裂面之间的土体全部压到初期支护上,基底土体承载力不够,造成隧道初期支护严重下沉。 洞内由于受雨水影响,围岩稳定性差,收敛变形大,初期支护严重变形,中隔墙拱架受力变形严重,本来是圆顺的弧形现在已变为明显的折线,同时,临时仰拱有受挤压上拱的现象,这说明在现有地质情况下,原设计的中隔墙及临时仰拱的刚度和强度已不能满足初期支护。在YK6+890~YK6+895中隔墙拱架受Ⅲ部土体侧压力发生严重挤压变形,拱架连接处断开,主拱架一日下沉达到75㎜。 事实证明,如不采取其它有效措施和方法,仅使用现在的工艺和方法已经无法向前掘进,因此将施工方法由CRD法变为双侧壁导坑法。 二、双侧壁导坑法的适用范围及工艺特点 适用范围:双侧壁导坑法开挖适用于围岩较差的Ⅴ级围岩条件下的行车隧道开挖,在浅埋大跨度隧道施工时,采用双侧壁导坑法能够控制地表下沉,保持掌子面的稳定,安全可靠,但速度较慢,造价较高。 工艺特点:以岩体力学为基础,新奥法为指导,充分发挥围岩自承能力及支护能力,确保围岩稳定;采用多工序平行交叉作业,避免施工相互干扰;施工中各工序安排合理,加强洞内施工管理和围岩监控量测,当变形速率有增大趋势时,应立即采取有效措施,保证围岩和衬砌处于稳定状态。
双侧壁导坑法在某隧道右线s5b段的应用-图一
3.3 隧道结构设计 3.3.1 洞口设计 根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。
3.3 隧道结构设计 3.3.1 洞口设计 根据本隧道的特点,并结合路基及进出口地形地貌、工程地质、水文条件,在充分考虑隧道进出口综合排水的情况下,尽量减少明洞的开挖并考虑施工开挖边仰坡的稳定性、本着“早进晚出”的原则,确定隧道进出口位置、明洞型式,洞门型式的选择力求结构简洁,并与洞口的地形、地貌协调一致,进出口洞门均采用削竹式洞门,右线进口桩号为YK20+650,出口桩号为YK24+345,左线进口桩号为ZK24+315,出口桩号为ZK20+645。 洞口施工中应尽量减少扰动周围岩体,尽早做好洞口边坡、仰坡的防护及隧道洞门,确保洞口安全。明洞开挖后的边仰坡面锚杆、喷射混凝土、钢筋网防护,明洞回填坡面应植草,恢复自然地貌。 3.3.2 洞身结构设计 3.3.2.1 洞口段 根据隧道洞口段的地质情况,洞身结构按新奥法原理进行设计,采用洞口加强衬砌,初期支护为锚杆、喷射混凝土、钢筋网及钢拱架,二次衬砌及仰拱采用模注混凝土,以确保洞口段安全稳定。Ⅱ类围岩段设计为S2-1、S2-4型复合式衬砌,并采用40米超前管棚预支护。
资料目录 设计说明 平行导坑、横洞内轮廓设计图 无轨单车道运输平行导坑、横洞I&I级围岩锚喷衬砌断面图 无轨单车道运输平行导坑、横洞I&I&I级围岩锚喷衬砌断面图 无轨单车道运输平行导坑、横洞I&V级围岩锚喷衬砌断面图 无轨单车道运输平行导坑、。。。
一、 概述 自 年1月11日会议确定某隧道施工方案以来,某局已按会议确定施工方案施工27米,但自ZK26+137.2至ZK26+120以来,隧道围岩为炭质、泥质灰岩及碎屑碎石,围岩经地下水长期浸泡,拱部极易垮塌。
设计原则 1、计算方法及采用依据 本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。 (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。 斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。
设计原则 1、计算方法及采用依据 本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。 (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。 斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。
设计原则 1、计算方法及采用依据 本图洞门类型与尺寸系根据地形、地质条件,按照《隧规》要求进行结构强度与稳定性计算,并结合工程类比和施工条件等因素综合分析确定。另外,斜切式洞门考虑了缓解高速列车进入隧道的空气动力学效应的作用。 (1)墙式洞门端墙均视为挡土墙进行设计,端墙和挡墙采用沿竖向或水平向取窄条的方法计算,作用于墙背的主动土压力按库仑理论计算,土压力方向水平,不计墙前被动土压力,洞门结构的土压力计算按《隧规》规定以及《铁路工程设计技术手册隧道》相关公式办理;并结合工程类比确定端墙的厚度,同时还应满足最小结构厚度值,设计中考虑了端墙与挡墙的共同作用。 斜切式洞门按明洞衬砌结构进行设计,用荷载-结构模型进行结构分析,并按《隧规》要求以破损阶段理论为基础进行结构计算,结合工程类比与施工条件等因素,综合分析确定。