上传于:2020-03-16 11:40:30
0
5分

xx隧道位于xx县xx镇xx村西南向,起止桩号为K13+475~K13+680,隧道全长205m,最大埋深为34m,本隧道设计为连拱隧道,进出洞口均为削竹式洞门。进口里程K13+475,其中K13+475~K13+490 计17m段设计为10m洞门和5m明洞,明暗交接里程:K13+490;K13+488~K13+530和K13+625~K13+667段为超前大管棚段。该隧道区地层由上而下依次为:第四系坡积土层;下伏基岩为晚侏罗纪南园组凝灰熔岩及其风化层。第四系坡积成因的粉质粘土分布于山体表面,厚度较小。粉质粘土:该地层在隧道区分布不均,主要分布在坡面、洼地内,在隧道进口端厚度较大,作为隧道洞口仰坡土体,易产生冲刷破坏,水土流失。全风化凝灰熔岩:该地层在隧道内均有分布,厚度不均,遇水软化、崩解。作为洞口仰坡岩体,在水的冲刷侵蚀下容易产生坡面变形破坏,形成浅层滑塌。强风化凝灰熔岩:该层在隧道内均有分布,厚度较大,风化岩为半岩半土状及碎石状,具有极密实砂和碎石、角砾的性质。作为隧道围岩,自稳能力差,水浸后极易加剧松散破坏:作为洞口仰坡岩体,容易在水的冲刷侵蚀下产生坡面变形破坏,形成浅层滑坡。在不受水冲刷侵蚀作用下,该层边坡稳定性较好。中风化凝灰熔岩:该层围岩是隧道主要围岩,岩体破坏至较完整,随着埋深的增加,风化程度逐渐减弱。根据该岩层饱和抗压强度试验,标准值为94.0MPa,属于坚硬岩;Kv=0.23~0.38;根据钻孔采取的岩芯观察,岩石裂隙发育或较发育。该层属于自稳性较差的围岩。

隧道中隔墙施工文案-图一

隧道中隔墙施工文案-图一

隧道中隔墙施工文案-图二

隧道中隔墙施工文案-图二

隧道中隔墙施工文案-图三

隧道中隔墙施工文案-图三

隧道中隔墙施工文案-图四

隧道中隔墙施工文案-图四

隧道中隔墙施工文案-图五

隧道中隔墙施工文案-图五

点击立即下载源文件

特别声明:本资料属于用户上传的共享下载内容,仅只用于学习不可用于商业用途,如有版权问题,请及时 联系站方删除!

收藏
分享

微信扫码分享

点击分享

  • 高速公路某隧道工程中隔墙施工方案(中铁大桥局)
    XX隧道位于XX省XX市XX乡境内。XX隧道起止里程为XX9+835~XX11+209,全长1374m,本合同段施工范围为XX10+750~XX11+209。由于XX隧道出口处受XX特大桥桥位的限制,XX隧道采用由整体式中墙连拱隧道、复合式中墙连拱隧道、小净距隧道和分离式隧道组成的分岔结构型式;XX隧道出口端洞门形式为削竹式。 本合同段施工范围内XX隧道主要工程量概况见下表: 表1XX隧道工程概况表 隧道名称 起止桩号 纵面线形 布置形式 洞门形式 隧道全长(m) 通风方式 照明方式 (坡度%、坡长m) 进口 出口 XX隧道 左洞 XX10+752~ XX11+209 2.85%、445.175 1.65%、16.277 分离式~连拱 - 削竹式 459.452 机械通风 电光照明 右洞 XX10+750~ XX11+209 2.85%、442.723 1.65%、16.277 - 削竹式 459 由于本隧道为一条分岔式隧道结构,隧道左洞设计线合并至右线时设置了一段长链,隧道长度在统计时已考虑了长链的影响。 表2 隧道主要工程数量表 工 程 项 目 单 位 数 量 工 程 项 目 单 位 数 量 开挖土石方量 m3 89331 排水工程混凝土 m3 6663 衬砌混凝土 m3 7867 钢筋 t 1351 仰拱混凝土 m3 4496 4496
  • 削竹式洞门隧道施工专项文案
    1.1 地理位置 XX隧道隧址位于XX省XX县XX镇南山村,设计速度为80km/h,左线全长800米(ZK48+960~ZK49+760),其中:削竹式洞门10m,明洞8米;右线全长826米(YK48+950~YK49+776), 其中:削竹式洞门10m,明洞8米。XX隧道设计为一座标准间距分离式隧道,隧道进口线间距26.2米,出口线间距18.1米。最大埋深左线57米,右线55米。隧道左线平面线形依次为R-1400,A-550,R-∞;隧道右线平面线形依次为R-1350,A-530,R-∞。隧道左线纵坡为2%、-0.6%人字坡,右线纵坡为2%单向坡。 1.2 隧道地形、地质条件 ⑴、气象 隧址区XX省东南部,地处XX中南部及XX主峰西侧,属温带大陆性气候,四季分明,夏季炎热多雨,冬季寒冷,昼夜温差较大,年平均气温10.3°C。最冷月份在一月,最低气温-22°C;日平均降水量为54.7mm,最大降水量为126.8mm;最大冻土深度为104cm。无霜期110~180天。 ⑵、水文地质条件 隧址区水文地质条件比较简单,无常年性地表水,降水稀少而集中,蒸发量大,多以地表水排走,很少补给地下水。隧址区地下水受地形地貌、地层岩性、地质构造、气象、水文等多种因素控制。主要为孔隙潜水及基岩裂隙水,水量一般较小,地下水主要靠大气降水补给,地表、地下水经流排泄条件较好,地下水水量贫乏,对隧道施工的影响较小。 但雨季施工时,可能有少量的基岩裂隙水渗入。 ⑶、工程地质条件 隧道洞口段及左线ZK49+050~ZK49+100、右线YK49+050~YK49+120洞身段,主要为强风化及中风化片麻岩组成,受区域断层F3的影响,岩体完整性差,呈碎裂状结构,节理裂隙发育,岩体破碎,自稳性较差。左线ZK49+100~ZK49+760、右线YK49+120~YK49+776洞身段,围岩主要为卵石及黄土组成,结构松散,成洞困难,Ⅳ级围岩占全隧的7.4%,Ⅴ级围岩占全隧的92.6%。 隧道围岩划分见表1.2.1 表1.2.1XX隧道围岩分级表 编号 隧道名称 起讫桩号 围岩级别长度(m) Ⅴ Ⅳ Ⅲ 1 XX隧道左线 ZK48+958~ZK49+050 92 ZK49+050~ZK49+100 50 ZK49+100~ZK49+760 660 2 XX隧道右线 YK48+949~YK49+050 101 YK49+050~YK49+120 70 YK49+120~YK49+776 656 占总长度的百分比(%) 92.6 7.4 1.3 技术标准 公路等级:双向四车道高速公路; 隧道设计行车速度:80Km/h 隧道建筑限界: 单洞净宽:0.75+0.5+3.75×2+0.75+0.75=10.25 m 隧道净高:5.0m 隧道行人横洞净空:净宽2.0m,净高2.5m 1.4 工程特点 XX隧道是本标段的控制性工程,具有以下特点: (1)受区域断层F3的影响,岩体完整性差,呈碎裂状结构,节理很发育,岩体破碎,自稳性较差。 (2)左线ZK49+100~ZK49+760、右线YK49+120~YK49+776洞身段,围岩主要是卵石及黄土组成,结构松散,埋深较浅,成洞困难,Ⅴ级围岩占全隧的92.6%。 1.5 工程难点 (1)地质超前预报,围岩监控量测,贯通控制测量技术。 (2)地质灾害预防与处理技术。 (3)环境保护和水土保持技术。
  • 郑西客运专线隧道施工文案
    要求本线隧道按新奥法原理组织施工,并要根据不同围岩级别及周边环境选择相应工法,应根据监控量测结果,适时施作二次衬砌。 黄土隧道施工严格按照“严控水、强支护、短进尺、勤量测”的原则组织施工,应特别注意地表冲沟、陷穴对隧道的影响,要加强调查和处理。 石质隧道破碎带按照“先支护、后开挖、短进尺、弱爆破、快封闭、勤量测”的原则进行组织施工。 隧道开挖前,首先完成洞口截水沟、洞口土方及边仰坡防护施工。洞口土方采用挖掘机配合装载机自上而下分层施工,大型自卸汽车运输,并及时做好坡面防护,开挖一段(台阶)防护一段(台阶)。洞口明洞采用明挖法施工,开挖至明暗分界线后,先施做护拱混凝土,然后施做暗洞超前大管棚,随后立即做好明洞衬砌,随后进入暗洞施工,待明洞混凝土达到设计规定的强度后及时进行明洞洞顶回填。暗洞开挖根据围岩情况Ⅴ级地段采用CRD法或双侧壁导坑法施工,Ⅳ级采用CD法或弧型导坑预留核心土法施工,每循环进尺控制在1m以内,Ⅱ、Ⅲ级及横洞Ⅳ、Ⅴ级围岩采用台阶法施工,每循环进尺控制在2.5m以内。 黄土隧道开挖采用人工配合挖掘机进行,出碴采用装载机配合大型或中型自卸汽车无轨运输。石质隧道采用钻爆法开挖,出碴采用装载机配合大型或中型自卸汽车无轨运输。 施工通风采用管道压入式通风。 在施工过程中应不断总结经验,优化工艺。加强超前地质预测、预报,加强围岩监控量测管理。根据量测结果,及时调整预留变形量及支护参数,适时施作二次衬砌,确保隧道安全。开挖方法的改变,要严格按程序申请设计变更。
  • 隧道初期支护侵限处理施工文案
    2.1、隧道设计概况 XX隧道位于XX省XX至XX高速公路XX段,本隧道为双洞单向分离式隧道,左线全长740.634米。右线全长680米,两线间距28.4m~31.9m隧道埋深为4.2m~102.98m,最大开挖宽度为12.54m,最大开挖高度为9.86m。隧道穿越地层围岩级别划分为Ⅳ~Ⅴ级,围岩由薄层状页岩、中~厚层状白云岩及断层破碎带内构造角砾岩等组成。隧道进口浅埋段围岩为页岩强风化,节理裂隙密集,岩体破碎,松散~碎裂结构,层间结合差。隧道深埋段围岩为白云岩中风化,节理裂隙发育,岩体破碎,块状结构,节理裂隙面结合一般。XX隧道进口左线ZK43+230~ZK43+380里程段(长150m),右线YK43+215~YK43+360里程段(长150m)为浅埋段。由设计图知,进口位于山丘前方斜坡上,隧道洞口处与地形线成约80°夹角,自然坡道约32°,洞口附近地表为碎石土质,岩性为强风化页岩,属软质岩,松散体~破裂结构,岩质较软,节理裂隙很发育主要结构面结合差。根据施工的地质调查,进口浅埋段为山体崩塌形成的超长堆积。 2.2、施工过程中初期支护侵限情况 左线隧道施工时,考虑到围岩为软质页岩,该围岩见水后无自稳能力,将设计的S5a支护形式变更为S5a加强型,即钢拱架由原来的80cm间距变更为50cm,但2010年3月8日,XX隧道左洞由于地质偏压的原因,地表先后出现了三条裂缝,裂缝宽度最大为4.5厘米,ZK43+237~ZK43+262段右侧和ZK43+272.3~ZK43+280.3左侧出现侵限,造成二衬厚度小于设计厚度,局部二衬厚度已成为负值,需进行拱部局部换拱处理。ZK43+235~ZK43+237的套拱需要拆除,长管棚保留。隧道内水平收敛最大值达280毫米。当隧道监控数据显示初期支护开始出现侵限后,及时采取了增设锁脚小导管、小导管引流、临时仰拱、附拱及横向工字钢支架、停止掌子面掘进,洞顶地表施作抗滑桩、集水井等措施进行了加固,确保了隧道施工安全。据监测显示隧道初期支护处于稳定状态,但在ZK43+237~ZK43+262段右侧和ZK43+272.3~ZK43+280.3段左侧初期支护侵限造成二衬厚度小于设计厚度,局部二衬厚度已成为负值,需进行局部换拱处理。由于ZK43+272.3~ZK43+280.3段侵限较小,已经进行了处理。ZK43+237~ZK43+262段需要换拱的部位见图一,ZK43+237~ZK43+262段拆换拱架部位(红色部位)。隧道测量断面及侵限图见附件一。
  • 隧道模板台车二次衬砌施工文案
    (1)本合同段起点XX镇XX村以XX梁上K19+740,接2合同止点,之后路线由西北向东南设特长隧道穿过XX至XX镇大村,止于XX大村以XX梁上K24+750,接4合同起点。本合同路线全长5.01Km。路线总体走向由北向南。主要控制点为起点XX镇XX村以XX梁、小XX、大村、XX镇大村以XX梁。 (2)XX隧道为双线隧道左线里程为:ZK19+740~ZK22+712,长度为2972m;右线里程为:K19+740~K22+680,长度为2940m。 (3)本分部工程为XX隧道洞口段V级加强段围岩二次衬砌方案,其中左线里程为ZK22+585~ZK22+695长110米,右线里程为K22+535~K22+665长130米。
  • 隧道下穿桩基托换施工文案
    (1)隧道下穿桩基概况 XX地铁XX号线全线在下穿XX人行天桥、XX立交桥、XX西引桥等3处建(构)筑物时,共有26根桩基侵入隧道建筑界限,按照设计文件要求需对桩基进行托换处理。 表2.5.1.2-1 桩基础托换处理汇总表 序号 地铁隧道区间 建(构)物名称 里程桩号 割除桩基础数量 1 XX~XX XX人行天桥 AK12+850 1根φ1.0m钻孔灌注桩 2 XX~XX XX立交桥 AK23+830~920 3处承台共9根φ1.2m钻孔灌注桩 3 XX~XX XX西引桥 AK27+130~210 4处承台共16根φ1.2m钻孔灌注桩 (2)桩基托换设计概况 桩基托换施工采用桩梁式主动托换,XX人行天桥托换桩直径φ1.0m,桩长27.83m,托换梁尺寸为2.5×2.5×13m;XX立交桥托换桩直径φ1.5m,桩长25.33m~27.83m,托换梁高为3.0m,宽分别为4.77m、7.88、9.01m,长12.29、12.32、12.33m;XX西引桥托换桩直径φ1.5m,桩长29.59m~30.5m,托换梁尺寸为2.5×2.5×14.5~14.8m。
  • 隧道斜井进入正洞挑顶施工文案
    xxx1号隧道于D2K34+460线路前进方向右侧设斜井一座,斜井中线与左线线路中线大里程端交角为400,采用无轨运输,斜井进入正洞段D2K34+420-D2K34+550为IV级围岩。
  • 隧道斜井径向注浆施工文案
    xxx隧道穿越吕梁山山脉北段,属中山区,进口位于岚县境内,出口位于兴县境内。隧道进口里程DK132+295,出口里程DK148+146,隧道全长15.851km。隧道中部最大埋深600m左右,出口端埋深较浅,约25~60m。隧道区进口段(岚县端)为山间黄土盆地,洞身段及出口段为褶皱断裂中山区,“V”、 “U”字形沟谷发育。隧道穿越地层除进、出口浅埋段为第四系黄土层外,其余均为太古界、元古界的变质岩地层。 xxx隧道2#斜井长1725米,综合坡度为11.2%的下坡,高差176.904米,斜井K0+000~K0+800设计涌水量1550.7 m3/d;K0+800~K1+725设计涌水量1296 m3/d。
  • 公路隧道钢便桥专项施工文案
    国家高速公路XX至XXXXXX境XX至XX高速公路XX合同段起点位于XX市XX镇XX村,终点位于XX县XXXX村。本合同段所属XX隧道出口端位于XX县XXXX村。连接项目部拌合站与隧道工作区设置6米宽混凝土便道,便道跨后XX小河。河道均宽3米,河流流量受季节性降水影响较大,属典型的山川河流,水流较缓,水量一般。
  • 成渝客专某隧道防排水施工文案
    XX隧道位于四川省XX县XX镇XX村,出口位于XX湾XX村附近。隧道进口里程为DK125+991、出口里程为DK127+335,全长1344m。 全隧洞内采用分区防水技术,重视初期支护防水,以衬砌结构自防水为主,以施工缝、变形缝防水为重点,辅以注浆防水和防水层加强防水。隧道二次衬砌采用防水混凝土,其抗渗等级不低于P10。隧道初期支护与二次衬砌间拱墙部位铺设防水板加无纺布。环向采用Φ50单壁打孔波纹管排水,墙脚纵向排水管采用Φ80单壁打孔波纹管排水,横向采用Φ100mmPVC排水管排水。洞内沉降缝及伸缩缝处均设橡胶止水带,洞内施工缝处均设置背贴式橡胶止水带和中埋式橡胶止水带。
  • 绕城高速隧道初期支护施工文案
    1.1工程简介 (1)本合同段起点XX镇XX村以XX梁上K19+740,接2合同止点,之后路线由西北向东南设特长隧道穿过XX至XX街XX村,止于XX街大村以XX梁上K24+750,接4合同起点。本合同路线全长5.01Km。路线总体走向由北向南。主要控制点为起点XX镇XX村以XX梁、小XX、大村、XX街XX村以XX梁。 (2)XX隧道为双线隧道,左线里程为:ZK19+740~ZK22+712,长度为2972m;右线里程为:K19+740~K22+680,长度为2940m。 1.2工程所在地地质情况 (1)地质条件 由于隧道出口段地形陡峭,围岩主要为白云岩、泥质白云岩夹少量页岩,风化强烈,岩石破碎,成角(砾)碎(石)状散体结构,地形陡峭稳定性较差。 (2)水纹条件 整个线路区水文地质条件较为复杂,各种含水层均有分布,地下水类型齐全。赋存裂隙水,局部地段也埋藏有层间水,碳酸岩分布亦较广,富含岩溶水。
  • 双连拱隧道中导洞开挖施工方案
    双连拱隧道中导洞开挖施工方案双连拱隧道中导洞开挖施工方案双连拱隧道中导洞开挖施工方案
  • 匝道中卵形曲线坐标的计算
    在高速公路立交平面线型中,现在越来越多采用卵形曲线这一线型形式,而卵形曲线坐标的计算在现有的书籍中很少提到,这就给施工中坐标的计算和放样增加了难度。在***施工中**互通式立交的匝道上就有卵形曲线的形式,我通过实践和对缓和曲线坐标计算的分析研究,总结出了卵形曲线的计算方法和技巧。
  • 龙里二号隧道中导洞溶洞坍方处理
    本文介绍了龙里二号隧道中导洞施工中出现的溶洞坍方而实施的相关施工技术方案,通过对量测监控结果的分析总结进而证明该施工技术方案实施的成功,给类似情况提供了参考。
  • XX隧道中心围岩监控量测专项方案
    XX隧道中心里程为DK42+825,全长1810m;设计行车速度近期120Km/h,远期预留140Km/h,近期铺设次重型有渣轨道(轨道结构高度67cm,长2.5m的II型轨枕,50kg/m钢轨)。洞身设计长度为1810m,设计纵坡为10.2‰的上坡,其中Ⅱ级围岩1050m,Ⅲ级围岩493m,Ⅳ级围岩267m。
  • 异型隧道(燕尾式衬砌)连拱衬砌中隔墙配筋节点详图设计

    三. 设计内容    (一)燕尾式隧道衬砌结构类型根据围岩级别和断面形式分别进行设计:    1. 大跨段Ⅱ~Ⅴ级围岩复合式衬砌图    2. 连拱段Ⅱ~Ⅴ级围岩复合式衬砌断面图;    3. 小间距加强段Ⅱ~Ⅴ级围岩复合式衬砌断面图;    4. 一般加强衬砌按围岩级分别选用"宜万隧参03"相应衬砌断面,根据需要采取必要超前加强措施。    衬砌断面的加宽    1. 大跨衬砌断面为便于与双线隧道顺接,其加宽值在"宜万隧参03"双线隧道最大加宽值W=130cm基础上顺接,取20cm整数为一级。    2. 连拱衬砌断面、小间距加强衬砌断面不需考虑加宽。    3. 实际使用所需的加宽值为非整数时,衬砌断面的尺寸及相应的工程数量均可按比例内插求得。

  • 小净距隧道二次衬砌施工技术文案
    XX隧道为小净距隧道,左线里程为ZK58+790~ZK59+260,右线里程为YK58+770~YK59+235,衬砌结构形式由XX至XX依次为:22m明洞+10mⅤ级加强衬砌+39mⅣ级加强衬砌+20mⅣ级一般衬砌+309m(右线304m)Ⅲ级围岩衬砌+40mⅣ级加强衬砌+10mⅤ级加强衬砌+20m明洞。二次衬砌工程的施工计划首先从ZK58+812开始施工,计划于XX年11月5日开工,计划完工时间为XX年3月下旬,施工时间为4.5个月,左、右洞的施工长度为935米,采用10米的整体式衬砌台车计划约2.5天浇筑一模,月平均进尺120米。 Ⅴ级加强衬砌、Ⅳ级加强衬砌、Ⅳ级一般衬砌段、Ⅲ级围岩段均设置二次衬砌,其中Ⅴ级加强二次衬砌为45cm钢筋砼结构,Ⅳ级加强、Ⅳ级围岩一般二次衬砌均为40cm素砼结构、Ⅲ级衬砌二次衬砌为35cm素砼结构。 主要工程量:C25模筑防水混凝土7480m3,C25混凝土回填2723.6m3,衬砌钢筋:Ⅰ级钢筋:8537.2 Kg;Ⅱ级钢筋:26219.6 Kg;防水与排水:1.2mmPVC防水板:24283.2 m2;350g/m2无纺土工布:26677.2 m2;PVC背贴式止水带:2015.2m;E651型橡胶止水条:550.2m;BW型缓膨止水条:1667.4m;φ160PVC排水管:1870m。
  • 运梁车驮运架桥机过隧道架梁施工文案
    4.1运梁车低位驮运架桥机过隧道及隧道口架梁 4.1.1施工准备 1)在过隧道前,对运梁车和架桥机进行详细检查,做好检查记录,确保设备百分之百完好。 2)复测隧道的空间尺寸是否满足架桥机过隧道要求。 3)为确保过隧道安全,必须在隧道两旁和中心设置间距3m、长2m、宽10cm的反光标志。距隧道进出口80m范围的路基以及隧道路面上用红色油漆连续划出运梁车行车时轮胎外侧的边线及路基中心线(见附图3)。 4)检查路面的平整度是否符合要求,路基的承载力是否大于0.6Mpa。 4.1.2 架桥机过隧道 工步1 ①安装油缸伸缩套,并顶升到位 ②拆除后支腿下横梁放于桥机前部 ③安装临时支腿 ④落回油缸伸缩套 工步2 ①运梁车进入架桥机下部 ②后支腿下横梁转90°置于运梁车上 ③支起油缸伸缩套 ④拆除临时支腿 ⑤折叠后支腿 ⑥向后折起前支腿 工步3 ①利用油缸伸缩套将桥机下降4m ②运梁车降到低位,驮运主梁穿过隧道 4.1.3 架桥机过隧道后组装 工步1 运梁车低位驮运架桥机通过隧道 工步2 运梁车运行到桥头位置,落下下导梁 工步3 落下并安装辅支腿,顶升油缸,使运梁车前支点脱离接触 工步4 同时开动运梁车活动枕梁和辅支腿电机,架桥机前移
  • 隧道洞门施工方案25页文案
    2.1 工程简述 XX高速公路XX标XX隧道位于XX县XX村附近,呈南北方向展布,属短隧道。隧道进、出口靠近省道XX线,可通汽车,交通较为方便。隧道左幅起点XX75+018,终点XX75+287,长269米;右幅起点K75+016,终点K75+304,长288米,为小净距短隧道。洞门形式XX端采用端墙式洞门、XX端采用削竹式洞门,对边仰坡进行绿化和防护。 2.2 设计说明 XX隧道XX端采用端墙式洞门、XX端采用削竹式洞门。洞口处在开挖前先施做洞顶截水沟,开挖过程中要求从上向下边开挖边防护。凝土在洞外采用拌和站集中拌和,混凝土搅拌运输车运至洞内,混凝土输送泵泵送入模。
  • 隧道进口施工临时用电专项文案
    某隧道位于甘肃省岷县县城东边,于洮河右岸岷县柰子沟村东侧山坡进洞,在岷县正龙骨料饲料厂后山坡出洞。隧道位于西秦岭中山区,山高沟深,地形起伏很大,洞身最大埋深248m,梁顶植被覆盖较好。隧道起讫里程DK201+817-DK206+952,全长5135m,隧道进口段DK201+817-DK202+854.809、出口段DK206+154.144-DK206+952位于R=4000m的曲线上,其余段落位于直线上,隧道内线路分别位于5.5‰、-3‰、7‰的人字形坡。隧道进出口位于212国道路边,交通方便。 本工程主要用电为空压机房、混凝土拌合站、钢筋加工场、初期支护以及现场生活、办公照明用电。
  • 太兴铁路小间距单线隧道施工文案
    xxxx1#、2#隧道位于山西省古交市,该段为黄土丘陵地貌,主要形态有黄土梁,峁,山峰相连,冲沟发育,多呈”V”字形,地面标高990~1100m之间,最大相对高差在110m左右。 xxxx1#隧道起止里程DIK48+510~DIK48+643,为全长133m的单线隧道,最大深埋约23m, 全隧道位于直线上,线路为单面上坡,坡率为3.9‰,距既有太岚铁路隧道线间距为15m,两隧道间岩柱体净距为8m。全隧分Ⅲ、Ⅳ两种级别围岩,Ⅳ 级围岩地段采用超前小导管加格栅钢架支护。 xxxx2#隧道起止里程DIK48+689~DIK49+565,为全长876m的单线隧道,最大深埋约87m, 其中DIK49+487.76~DIK49+565位于曲线上,曲线半径为R=1800m,线路为单面上坡,坡率为3.0‰,距既有太岚铁路隧道线间距为15m,两隧道间岩柱体净距为8m。全隧道分Ⅲ、Ⅳ、Ⅴ三种级别围岩,Ⅴ级围岩地段采用明洞出洞,Ⅳ 级围岩地段采用超前小导管加格栅钢架支护。 xxxx隧道起止里程DK22+891.00-DK23+048.00,全长157.00m的单线隧道,最大埋深约45.0m。全隧道位于直线上,隧道内线路为单线下坡,坡率为5%,右侧与既有线太岚线隧道相距最近20m。全隧道分Ⅱ、Ⅲ、Ⅴ三种级别围岩,隧道进口8m、出口15mⅤ级围岩地段采用明洞出洞,隧道出口暗洞Ⅴ级围岩采用管棚预支护。
  • 市政隧道工程开挖施工文案
    2.1 地理位置及工程范围 本项目XX隧道位于XX市西部XX区和XX区,为XX南路工程穿越XX段,处于XX市旅游景区内,是XX市规划道路网“主环”中XX路~XX路的重要组成项目,是XX市内环西线的一部分。项目建成后,从东到西,由南及北,围绕着城区的快速通道将连成网络,XX城区向外辐射功能大增。 2.2 设计概况 2.2.1 工程设计概况 XX隧道采用双洞分离式设计,城市快速路技术标准,双洞六车道,设计速度80km/h,隧道净宽13.5m,隧道净高7.78m,建筑限界高度5.0m,洞内路面设计荷载采用城市A级。 隧道左右轴线间距按29m控制,进出口间距控制在16~22m。XX隧道平、纵断面指标见表2-2-1。 隧道暗洞按照新奥法原理设计与施工,以锚杆、喷射砼、钢拱架等为初期支护。 全隧设置人行横洞4道,车行横洞1道。
  • 隧道工程开挖专项施工文案
    1、 工程概况 XX店隧道位于XX市XX区XX店街道办事处XX店村境内,为低山丘陵,小里程进口处地势较平缓,自然边坡6o~10o,大里程出口地势较陡,山体自然边坡25o~35o,起伏较大。工点区多辟为耕地,冲沟发育,地表局部基岩裸漏,工点在DIK52+187~DIK52+227段穿201国道(XX线)。沿线暖湿多雨,水量充沛,水力资源丰富。沿线河流较多,辽南主要河流有青云河、登沙河等,均单独入黄海,受季节性控制,平时河水流量不大,雨季流量较大。 2、地震动参数 根据GB18306-2001《中国地震动参数区域图》,本区地震动峰值加速度0.15g,地震基本烈度Ⅶ度。 隧道区域抗震烈度为9度区,地震动峰值加速度为0.3g,地震动反应谱特征周期为0.4s。 3、水文地质特征 工点区未见地表水、出口附近约50米处有一小溪,水深约0.7米,直接补给来源主要为大气降水,具有暴涨暴跌的特征。 地下水为基岩裂隙水,局部冲沟处理埋藏较浅。地下水总的径流方向由东南向西北,主要受大气降水及地下径流补给,地下水季节变化幅度2~3m。
  • 隧道施工安全事故应急预案文案
    基坑及挖孔桩爆破施工前应分工点制定专门技术方案,并经有关人员审核批准方可施工。
  • 埋深257m隧道爆破设计文案
    xx隧道位于xx中低山区,隧道基本沿xx右岸山脊走行,隧道穿越xx沟,xx,xx,xx,进口位于xx河右岸,出口位于xx右岸基岩斜坡上,隧道起讫里程为Dyk212+030~Dyk216+714,全长为4684m。隧道为单线电化铁路隧道,最大埋深257m。新隧道位于既有线右侧80~700m。全隧道除进口段308.80m位于R-1600m曲线上及出口段1810.46m位于R-4000m的曲线上外,其余均位于直线上。隧道纵坡分别为10.7‰、11.0‰、10.8‰及4.0‰的单面下坡。 xx隧道全长4684m,南阳端洞口受地形条件限制,施工条件差,设一座横洞辅助施工。横洞位于线路左侧,与线路交于Dyk216+600,平角71°,长度339m,坡度为0.5%,采用无轨运输方式。
  • 新奥法隧道施工中常规量测
    摘要阐述了隧道新奥法施工隧道常规量测方法。 关键词隧道新奥法施工拱顶下沉水平收敛监测方法
  • 太阳能加热系统在巴朗山隧道中的应用研究
    太阳能作为一种热辐射能源,是一种无污染的清洁能源,对太阳能的开发利用,已成为世界各国索取和利用新能源,进行节能环保的重要研究课题。
  • 超前地质预报系统在岩溶地区隧道中的应用
    超前地质预报的探测原理、隧道工程中的岩溶、在岩溶隧道中的应用实例,可供参考。
  • 隧道中心排水管安设检查表
    土工布材质、规格及安设检查: PE500排水板材质、安设位置及安设情况: 1. 2.
  • 路线中心线与隧道中心线衔接检验表
    本资料为路线中心线与隧道中心线衔接检验表,目录齐全,内容完整,可供下载使用
  • 双连拱隧道中导洞开挖组织方案
    本工程为双连拱隧道,进口里程K73+157,出口里程为K73+620,隧道全长463m,线路纵坡2.5%。隧道开挖区岩性以千枚状板岩,粉砂状千枚岩为主的软质围岩,岩体结构松散,呈强风化-全风化状。开挖区内构造发育,可视破碎带达6条之多。隧道渗水以第四系孔隙水,构造带裂隙水为主,遇雨水天气,隧道涌水量成倍增长。
  • [成都]铁路双线隧道中心水沟节点详图

    适用于盖板式中心水沟。盖板采用C35钢筋混凝土。板内钢筋采用HPB300钢筋。水沟过水水深,侧沟H取0.25m,中心水沟H取0.40m。管壁粗糙系数取0.013。   ……共计2张,

  • 双连拱隧道中导洞开挖施工组织设计方案
    本标题为双连拱隧道中导洞开挖施工组织设计方案,其包含的内容仅供参考。
  • 铁路工程隧道二次衬砌施工文案
    二次衬砌施工作业程序是先浇筑①部仰拱和②部仰拱填充,然后③部拱墙采用模板台车一次浇筑成形,模板台车采用12m组合式模板台车。混凝土采用自动计量装置计量,集中拌合,由混凝土罐车运送到现场,混凝土输送泵泵送入模,混凝土灌注完毕后进行养护、拆模,然后进入下一循环。
  • 梧贵高速公路某隧道监控量测施工文案
    本项目隧道一座,即XX隧道,左右分离布设,进出口为小净距隧道,隧道长左洞465米右洞515米。隧道穿过丘陵地貌,进口洞门采用端墙式,出口洞门采用削竹式,隧道最大埋深约127.1m,隧道穿越的地层在中间地段主要为中风化—微风化花岗岩,在洞口段主要为强风化—中风化花岗岩,隧道洞口段围岩节理裂隙较发育,完整性较差,地下水主要以围岩裂隙水为主。
  • 湘桂铁路某隧道贯通施工专项文案
    本方案依据管xx隧道施工图纸和现场安全防护要求进行编写,主要包括xx隧道出口与2#横洞施工组织安排、钻爆设计、施工安全以及相关技术措施等内容。
  • 油竹山隧道防灾救援工程专项施工文案
    2.1适用范围 油竹山隧道防灾救援工程,主要包含:各种配电箱安装,控制箱安装,风机安装、防护门安、箱式变电站基础制作、安装;高、低压电缆安装及其应急照明、疏散灯具安装等。 2.2主要工程量 序号 名 称 规 格 型 号 单位 油竹山隧道 合计 备 注 1 利用的辅助坑道 进口平导 出口平导 2 箱变型式 Ⅱ型 Ⅱ型 3 变压器容量 125 125 4 布置方式 双箱变 双箱变 5 10/0.4kV箱式变电站-Ⅱ型 座 1 1 2 6 应急照明控制柜(含EPS及照明控制) HYS-7kW 120min 面 1 1 2 7 风机控制柜(K-FJ) 面 1 1 2 8 风机双电源切换箱(AT-FJ) 详见低压系统图 面 1 1 2 9 正常照明按钮箱(K) 详见控制原理图 面 6 5 11 10 应急照明按钮箱(ESB) 详见控制原理图 面 40 32 72 11 应急一键启动箱(EB) 详见控制原理图 面 5 4 9 12 铁路隧道应急照明灯 LED光源,~220v,30W 套 117 100 217 13 铁路隧道应急照明灯(新增) LED光源,~220v,30W 套 90 72 162 14 铁路隧道应急疏散方向指示灯 LED光源,~220v,6W 120min 带米标 套 117 100 217 15 救援出口标志灯 LED光源,~220v,6W 120min 套 10 8 18 16 防护门标志灯 LED光源,~220v,6W 120min 套 5 4 9 17 应急电话终端标志灯 LED光源,~220v,6W 120min 套 5 4 9 18 10kv电缆分支箱 座 2 2 4 19 灌浇式电缆分线盒及穿刺(防水型) 3x4 个 249 212 461 20 电力电缆头 10kV 户外冷缩式 120mm2以下 套 4 4 8 21 电力电缆头 1kV 户外热缩式 35mm2以下 套 8 8 16 22 电力电缆头 1kV 户外热缩式 120mm2以下 套 4 4 8 23 现场测控远程站 套 1 1 2 24 主控制器 套 1 1 2 25 集中监控盘 套 1 1 2 26 射流风机 SLFJ125 台 2 2 4 含钢丝网围栏 27 耐火抗爆防护门 1700×2000mm(宽×高) 面 5 4 9
  • 隧道工程超前长管棚专项施工文案
    一)、工程简介 二)、工程地质概况 1、地形地貌 隧道区属构造—侵蚀丘陵地貌区,穿越浑圆状山体,沟谷切割较深,多呈“U”型峡谷,自然坡角20~35°。山脉总体呈东西向,山顶呈圆状,多发育树枝状冲沟,沟内一般无水地表径流。地表植被不甚发育,多以稀疏林木为主,进口地带有乡间简易公路到达,交通较为不便。 2、地质岩性 根据工程地质调查、钻探及物探资料,本隧道地段围岩主要为元古代武当群(Pt2w)片岩和白垩—第三系(K-E)砾岩;两岩性呈角度不整合接触;斜坡坡面和低洼冲沟内覆盖第四系残坡积(Q4e1+d1)粉质粘土层。 3、地震基本烈度 隧道场区地震动反应谱特征周期为0.35s,地震动峰值加速度分区属0.05g区,相当于原地震基本烈度VI度区。依据《公路工程抗震设计规范》(JTJ004-89)有关规定,该隧道可比基本烈度提高一度采取抗震措施。 4、水文特征 隧道区地表水系不发育,隧道区多发育树枝状冲沟,沟内一般无地表水径流。但在雨季会出现短暂地面渗流,流量较小,对隧道施工影响较小。隧道区地下水类型主要为基岩裂隙水,其次为残坡积碎石质粉质粘土层中的孔隙水。分部零星、不稳定,水量亦随季节变化。 三)、工程概述 由于隧道进、出洞口浅埋,为了保证隧道开挖稳定,实行管棚预支护,预先处理围岩,提高其整体性,增加稳定性,能承受开挖后的围岩应力和抑止围岩变形。 在开挖隧道左洞进口29m、出口30m和右洞进、出洞口30m,隧道拱部140°范围采用φ108无缝钢管(壁厚6mm)超前大管棚注浆支护辅助施工,共设37环,左洞出口和右洞进出口每环钢管总长度30m,左洞进口每环钢管总长度29m,环向间距0.4m,外插角2~3°,注水泥浆。同时根据实际情况在地下水较发育可添加水泥浆液体积5%的水玻璃,进行水泥-水玻璃双液注浆。 套拱在隧道开挖轮廓线以外施作。设计采用C25混凝土内嵌2榀工18工字钢拱架作为长管棚定向拱架,φ127无缝钢管(壁厚6mm)作套管,用φ25螺纹钢固定在拱架上,套拱纵向长度2m,拱架之间用φ22螺纹钢连接,拱架间距100cm。 超前大管棚采用φ108无缝钢管,壁厚6mm,节长6m。采用丝扣连接,丝扣长15cm,φ102×6套丝扣钢管长30cm。钢管接头按奇、偶数错开,纵向同一断面内的接头数不大于50%,相邻钢管的接头至少须错开1m 。超前大管棚施工时,钢管与隧道中心线平行,其仰角为2~3°(不包含路线纵坡)。
  • 隧道工程监控量测专项施工文案
    中铁XX公司XX铁路XX标XX段隧道工程主要为:XX隧道、XX隧道、XX隧道3座隧道。 1.1XX隧道位于XX省XX县XX村,起讫里程为FDK539+490~FDK539+837,全长347m,V级围岩,最大埋深为30.5m,出口为最小埋深约3m,为浅埋隧道。主要开挖方法为明挖34m、交叉中隔壁法163m及三台阶七步开挖法150m。 1.2XX隧道起于XX省XX县XX村,止于XX市XX区XX村,起讫里程为FDK540+098~FDK540+450,全长352m,V级围岩,最大埋深为10.81m,最小埋深约0.5m,为浅埋隧道。主要开挖方法为明挖250m、交叉中隔壁法102m。 1.3XX隧道位于XX市XX区XX村,起讫里程为FDK541+215~FDK542+034,全长819m,II级围岩275m、IV级围岩173m、V级围岩371m,最大埋深为35.96m,最小埋深约2.8m。主要开挖方法为明挖、全断面法、三台阶七步开挖法。 分析以上隧道工程地质概况及施工工法,为实现隧道施工安全、质量目标,特制定本方案。
点击查看更多
全部评论 我要评论
暂无评论